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en Île-de-France
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Virginie UHLMANN
EMBL European Bioinformatics Institute Rapporteur
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Avant-propos

Dès mon plus jeune âge, j’ai toujours baigné dans un optimisme vague. Dans ma famille,
on considérait que la vie était difficile. Dans ma famille, on estimait l’intelligence et la
débrouillardise. Et surtout, dans ma famille, on préférait la liberté à la sécurité. Je crois que
mes parents voulaient simplement faire de nous des enfants normaux. J’ai connu une enfance
heureuse, partagée entre la ville et la campagne, avec un père un peu trop sévère et une mère
qui ne l’était pas assez. Ayant fréquenté des établissements passables ou médiocres durant la
majeure partie de ma jeunesse, j’eus beaucoup de temps pour cultiver de nombreux loisirs en
dehors de l’école, ce qui me permit de me passionner pour tout un tas de choses. J’ai toujours
beaucoup lu, de la science-fiction, de la fantaisie, des livres d’histoires. Je me suis perdu sur
internet, je me suis perdu dans des mondes virtuels, je me suis perdu dans la nature. J’aimais
faire du vélo, j’aimais la neige, j’aimais l’hiver, comme j’aimais l’été. On m’a toujours dit que
j’allais devenir ingénieur. J’acceptais mon destin, flou lui aussi, avec obéissance.

Je pense avoir compris ma vocation à l’âge de 15 ans. À cet âge-là, inspiré par la lecture de
forums sur internet, je portai beaucoup d’attention à la manière d’enregistrer du son. Faire
du piano m’intéressait très peu, en revanche, je développai un intérêt aigu pour la façon dont
on pouvait capturer fidèlement un signal sonore. Dans un microphone, une onde sonore fait
vibrer une membrane, le diaphragme. Ces vibrations sont ensuite converties en un signal
électrique, qui est alors amplifié et numérisé. Un tel signal peut ensuite subir divers traite-
ments, chacun correspondant à des opérations mathématiques bien définies. Je découvris ce
qu’était une transformée de Fourier, une convolution, ainsi que les différents algorithmes de
compression. Je dus également m’intéresser aux problèmes d’acoustique et de réverbérations.
Sans le savoir, je faisais mes premières incursions dans le monde de la physique et du traite-
ment du signal.

J’ai ensuite passé deux années en classes préparatoires au Lycée Jean-Baptiste Say, où j’ai
été préparé par d’excellents professeurs, et logeais dans un internat pas très loin de là, rue du
docteur Blanche. L’un dans l’autre, j’ai pu faire mes études dans un cadre exceptionnel. Au
bout de ces deux années, j’eus l’immense chance d’intégrer l’École Polytechnique. Cette école
m’apporta énormément, et me laissait toutes les portes ouvertes, ce qui me permit de choisir
ce que je devais faire de ma vie. J’y ai effectué deux stages, le premier dans une start-up
développant un télescope connecté, où j’ai découvert à la fois le monde de l’entrepreneuriat et
de l’analyse d’images. Le second se déroula au sein du département de chimie de l’Université
d’Oxford, où mon travail consistait à analyser statistiquement des images de microparticules
dans un fluide. Je suis ressorti de cette école plus mûr, endurci, en un mot: adulte.

Au début de ma thèse, en 2020, le monde était devenu vraiment étrange. Les gouvernements
occidentaux, plongés dans une sorte de folie, annonçaient via des bilans quotidiens alarmants
une pandémie qui peinait à se concrétiser. En réponse, chaque jour de nouvelles règles venaient
restreindre notre liberté de façon toujours plus extrême. Les principales sources d’information,
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les réseaux sociaux, subissaient tous une censure féroce. L’état et sa police déployaient toute
leur force dans des actes de répression absurdes. Dans ce climat, devenir docteur en physique
m’intéressait assez peu. Cette thèse fut donc le résultat d’un concours de circonstances très
improbable : Mon stage de fin d’études devait initialement se dérouler en Suisse, mais à cause
du premier confinement, je dus trouver un autre stage à la dernière minute, et alla dans le
laboratoire d’Hervé Turlier au Collège de France. Mon stage était très intéressant, et j’obtins
une bourse pour continuer en thèse. Cependant, j’avais envie de changer d’air et de vivre
dans le feu de l’action, donc vivre trois années de plus dans un Paris sordide et paranöıaque
ne m’intéressait guère. Assez peu motivé, ce contrat m’offrait tout de même beaucoup de
liberté. Je restai donc.. Aujourd’hui, tout cela semble lointain. Maintenant que ma thèse est
achevée, je ne regrette pas d’y avoir consacré trois ans de ma vie. La science est quelque chose
de superbe, et les avancées techniques forment l’essence de l’optimisme pragmatique. Jeune
Français de 24 ans, j’ai trouvé peu de buts dignes de vouer ma vie. Plutôt que de remettre
en question le monde que nos ancêtres ont bâti et de souscrire aux utopies les plus absurdes,
je préfère me tourner vers le progrès technique, convaincu que les hommes qui ont le pouvoir
de changer le monde sont ceux qui parviennent à ne pas sombrer dans la démoralisation et le
sentiment d’impuissance ambiants, pour s’élever au-dessus d’un quotidien pesant et imaginer
un futur nouveau. La foi en Jesus Christ aide à dépasser ce stade de révolte, à accepter
que notre monde est brisé et à trouver la paix auprès de lui. Une fois ce deuil accompli,
le futur apparâıt plein de possibilités, et nous avons le devoir de bâtir ce futur, de le faire
émerger de l’imagination, de l’état de possibilité, pour l’ancrer dans le réel. Silencieusement,
le progrès suit son chemin, et les discours millénaristes s’estompent, les nouvelles prouesses
de l’intelligence artificielle nous montrant que le progrès technique et scientifique pourrait
finalement résoudre les problèmes existentiels causés par notre civilisation.

En parallèle, la croyance autrefois répandue en le monopole de l’homme sur l’intelligence est
en train de s’effriter, une évolution qui n’est pas dénuée de conséquences saines et positives. Il
devient difficile d’embrasser le positivisme lorsque l’on est surpassé par une machine ! Face à la
lucidité impartiale des modèles de langage, les impasses intellectuelles s’estompent. La beauté
des images générées artificiellement a conquis le cœur des hommes, lassés des élucubrations
stériles des pseudos-artistes modernes. Après avoir transformé l’art, elle s’apprête à conquérir
le reste du monde. La vérité, dans tous les domaines, finira par se révéler. Dans les années à
venir, ceux qui ont bâti des empires sur des mensonges verront leurs impostures exposées en
plein jour par la machine, qui se révèle être plus sage que les hommes.

Je tiens à exprimer ma profonde gratitude à Hervé Turlier et à toute son équipe pour m’avoir
accueilli dans leur laboratoire, et encadré durant ma thèse. Un grand merci également aux
autres chercheurs avec lesquels j’ai eu l’opportunité d’interagir, notamment Andreas Weber,
Henry de Belly, Fabrice Delbary, Rémi Dumollard, Alex McDougall, et Guillaume Charras.
Je remercie aussi tous mes professeurs et mentors, mes professeurs en particulier mes pro-
fesseurs de physique de l’École Polytechnique: Manuel Joffre, Philippe Grangier, Roland
Lehoucq, Kirone Mallick, Rémi Monasson, et David Quéré.

Un grand merci à tous les hommes qui ont voué leur vie à servir le Christ, en particulier le
père Antoine, le père Thibaud, le père Maxime, le père Dominique, et tous ceux qui m’ont
inspiré et accompagné avec charité au fil des années.

Je tiens à saluer les icônes culturelles, passées et présentes, qui m’ont accompagné durant
toutes ces années: Honoré de Balzac, Fiodor Dostöıevski, Louis-Ferdinand Céline, Michel
Houellebecq, ainsi qu’a tous les hommes qui ont eu a coeur de rendre hommage à la vérité !
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Et enfin, les scientifiques, entrepreneurs, visionnaires et ingénieurs qui motivent mes efforts
pour faire de cette terre un monde meilleur : Richard Feynman, Freeman Dyson, John Von
Neumann, Nikola Tesla, James Dewey Watson, William Shockley, Elon Musk.

Mes remerciements s’adressent aussi à mes parents, pour m’avoir offert une enfance heureuse
et pour avoir toujours cru en moi et en mes projets. Vous m’avez inculqué les valeurs de la
famille et du devoir. Je suis également reconnaissant envers ma grand-mère Monique, qui m’a
enseigné l’importance de la foi, de la charité, et de la force de la volonté, et ma grand-mère
Marianne, pour son courage et son intégrité intellectuelle. Un merci spécial à mes sœurs pour
leur accompagnement et leur soutien continus au fil des années. Je remercie également mes
oncles et tantes, particulièrement Steve pour son appui dans les moments cruciaux, ainsi que
mes cousins Mathias et Andreas, toujours présents dans les moments importants. Mes amis,
en particulier Louis, Martin, et Benoit, ont éclairé et guidé ma vie avec la lumière et la joie
du Christ. Je remercie aussi tous mes autres camarades d’école qui ont croisé mon chemin au
cours de ces longues années.

Maintenant que mon doctorat touche à sa fin, mon optimisme est pragmatique. Nous vivons
actuellement le tournant le plus extraordinaire de l’histoire de l’humanité. La recherche
académique est un univers fascinant ; cependant, les progrès de notre monde sont si rapides
qu’un tel corporatisme me semble trop contraignant pour naviguer de manière agile dans les
bouleversements qui s’annoncent. Je ne compte pas rester passif et me lance à corps perdu
dans le domaine de l’intelligence artificielle. Bâtissons le monde dont nous rêvons !
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Chapter 1

Introduction: The Biophysicist

”Nous déclarons que la splendeur du monde s’est enrichie
d’une beauté nouvelle: la beauté de la vitesse.”

Filippo Tommaso Marinetti
Manifeste du futurisme

Published in Le Figaro on February 20, 1909.

Amidst the rapid evolution of biology, catalyzed by big data and AI, we will dis-
cuss the role of physicists in biology, the value they could contribute, both in
theoretical and experimental approaches. To understand this, we will need to
delve into epistemology, the nature of the scientific method and modelling, that
we will then revisit through the lens of information theory. We also discuss op-
portunities AI brings to quantitative biology, and share insights about the future
of data gathering and analysis.

Dans le contexte de l’évolution rapide de la biologie, catalysée par les grandes
données et l’intelligence artificielle, nous discuterons du rôle des physiciens en bi-
ologie, de la valeur qu’ils pourraient apporter, tant dans les approches théoriques
qu’expérimentales. Pour comprendre cela, nous devrons nous plonger dans
l’épistémologie, la nature de la méthode scientifique et de la modélisation, que
nous réexaminerons ensuite à travers le prisme de la théorie de l’information.
Nous discuterons également des opportunités que l’intelligence artificielle apporte
à la biologie quantitative et partagerons des perspectives sur l’avenir de la collecte
et de l’analyse des données.

9
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1.1 Why should a physicist do biology ?

Why should a physicist do biology?

After earning my master’s degree in statistical physics, I chose to pursue a PhD in biophysics.
Nature and living things have fascinated me for as long as I can remember. Alongside this, I
found myself deeply drawn to history, intrigued by the wisdom to be learned from past human
experiences, preserved in books, art, and temples. It took me some time to discover the realm
of genetics, the most hidden temple of all. In the sequences of nucleotides lie the legacy of our
ancestry, which we will pass on to our descendants. These chains contain the entirety of our
ancestors’ history, a magnificent biological tale that provides insights into our most distant
past, before we had the capabilities to write, speak, or even think. They epitomize the tragic
dimension of our existence: our genes offer no escape. They are what they are, and we are
what they are.

The lab of Hervé Turlier, which welcomed me, specializes in the mechanical modelling of early
embryogenesis. The first divisions of the egg cell are crucial, as they pave the way for the rest
of the organism’s development. Understanding the mechanical aspects of these early divisions
is key to understanding how genes execute the developmental program at the very beginning
of our lives.

All of this is undoubtedly fascinating. But do biologists really need physicists? What value
could I bring to their projects? Should I do experiments or focus on theory? To my surprise,
everyone, from biologists to physicists, was eager to discuss with me and seemed happy to
welcome me to their team. Biology is rapidly changing, partly due to the emergence of high-
throughput and AI approaches. To evaluate their potential to revolutionize the way we make
scientific discoveries, it is interesting to revisit the nature of science, biology and physics,
and see how these emerging technologies could fit into this framework. Today, biophysics
has become a buzzword. Everyone wants to do ”modelling” and to be ”quantitative”. In my
opinion, this trend is justified and here to stay, and I will try to provide an explanation for
this in this introduction. The topic is infinitely broad, and this will thus be a rather eclectic
discussion, where I will offer several complementary views that help understand how we might
unravel the mysteries of life in the years to come. In the end, we are all biologists and we
are all physicists: our goal is to uncover the truth about the deepest mysteries of our universe.

A PhD is a weird endeavor, when you really ponder it. It seems like a vestige of the old
apprenticeship system, where you have a supervisor, who is himself a doctor, guiding you
on the questions you should pursue, helping you get started, aiding in writing your articles -
essentially mentoring you in every aspect of your research before you become yourself worthy
of the title of doctor.

The current state of affairs: PhDs, Globalization and Innovation-driven growth

I come from the French higher education system, where students undergo a rigorous selec-
tion process to gain admission into prestigious institutions, called ”Grandes Écoles”. In this
system, entering top-tier schools is way more challenging than obtaining a PhD, making it a
more reliable indicator of one’s cognitive abilities, motivation, and mental strenght. A PhD
is more a testament to one’s perseverance and expertise in a specific domain, as candidates
spend 3 to 5 years developing a research project and acquiring new skills.
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When I started my PhD, there was a trend among leading companies like Google and Facebook
to make a PhD mandatory for research roles. This emphasis on the PhD, from a French point
of view, does not make sense, but in a globalized world, the PhD remains the internationally
recognized standard. An explanation for these trends is the increasing focus on innovation and
Research and Development in modern economies. As software and the internet have lowered
entry barriers to many industries, many businesses face a greater risk of being disrupted,
making innovation a key driver of growth, and even survival in an ever-more competitive
economic macro environnement. In this context, having completed a PhD provides valuable
insights into the innovation and the research process, which has numerous aspects that one
must experience in their flesh to truly understand their relevance. Here are some
of the key lessons that I learned:

• The difficulty of inventing something new, the amount of time it takes and how little
rewarding it is.

• The complete lack of correlation between the impact of your work, and the time invested
in a project.

• The importance of knowing how to navigate the infinite search space for new ideas, by
consulting experts, attending conferences, and exploring various resources.

• The instructive nature of both failures and successes: PhD programs provides a low-risk
environment to learn from these experiences.

• The crucial role of execution.

• The need to minimize distractions that drain creative energy.

• The immense value of creative individuals, who may have unconventional personalities
but are difficult to replace.

Innovation is a peculiar world, where individuals explore uncharted territories in search of
valuable discoveries. There are two kinds of people: Problem-posers and problem-solvers.
Formulating clear problems is not an activity specific to research, and a lot of people entirely
devoted to engineering are brilliant problem-posers. However, an engineer that is a very good
problem-solver can focus on solving problems, whereas in research you will be confronted
every time to problem formulation. In engineering, you have practical goals, that can always
be more or less summed up as: ”Make the thing work”. Money is the ultimate boussole. In
research, you have no real boussole: You need to create your own flair, and constantly ask
yourself: Is my question interesting ? Is it solvable ? With the advent of AI, the problem-
posers are going to be immensely valuable, whereas the problem-solvers will most probably
be replaced by algorithms.

I see the PhD as a space of freedom, a small-scale playground where one is allowed to develop
this flair, and hone their problem-posing skills, along with their problem-solving ones. This
process of venturing into the unknown without any guarantees can generate a lot of stress,
but it will be what will make you stand by the crowd, and will probably be one of the only
way to remain relevant in an AI world (The other obvious way being doing a manual job).
However, my description of the innovative process is a bit too romantic. In reality, research is
not a lonely exploration into uncharted territories. You are never alone, because at any time
the intersection between interesting and tractable questions is quite small. Numerous other
explorers are navigating along with you, using a variety of strategies. One method is go into
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the fray, and try solving the problems everybody wants to solve (if everyone is trying to solve
a problem, then this problem must be important). Of course, to win, you should better be
faster and more efficient than others.

An alternative strategy consists of developing your own ”pré-carré”, tackling problems that
you believe are interesting but that remained under the radar of other researchers. A frequent
reason for this is that solving such problems requires a non-trivial set of skills and tools, an
expertise that you will develop specifically, and that will make you uniquely positionned in
your field. This expertise might be rooted in your prior knowledge or rely on unique resources
you have access to. This expertise can manifest in various ways, such as having access to a
specialized lab instrument or undisclosed software. It might also be more abstract, like having
a robust network of collaborators who can provide access to exclusive data, or showcasing
proficiency in specific experimental techniques or mathematical theories. However, if you’ve
achieved this, others can too: If your pré-carré is very prolific, it will soon be invaded—there’s
no unchallengeable monopoly in expertise.

Research and engineering. What is ”the true thing” ?

A good student in STEM1 has to choose between two paths: concrete problems, that has to
be solved to attain a short term goal, and abstract problems, with goals that are more fuzzy,
that may be necessary to solve in the long term to advance our understanding of a particular
topic of interest. The first end is often called Engineering, while the second is called Research.
Research oriented on a shorter timescale is called Research and Development, by opposition
with Basic Research. Today, all these things are quite hard to disentangle: in computer sci-
ence, solving abstract problems without any practical goal can more and more result in very
fast and successful solutions.

If a problem is interesting to be solved in the medium term, say 15 years, a company can
be interested in investing resources into its solution. However, no company will invest in a
50 years horizon, and this is more and more true in our fast-paced finance-driven world2.
Thus most of the problems will be exclusively studied in academia: The ones with no clear
practical applications, where the only goal is to understand things. Or the ones with practical
applications but that are so risky and badly defined that nobody really studies them.

I think choosing between one and the other is a matter of taste, and of personal goals. The
culture between the two environnements, engineering and research, is far different, and will
not suit the same personnalities. Engineering teams will tend to have a more rigid culture,
with less room devoted to personal initiative, whereas research teams will be more flexible,
letting everybody draw their own path. Of course, the culture will depend on the country
and the particular environnement you are in, but the culture adapts to the kind of tasks a
team is doing, so my considerations holds universally, no matter the peculiarities of any place
and situations.

I also need to adress a very critized aspect of academic life, which is grant writing. I have
to say that I never wrote any grant, except single pages documents here and there. I think
people tend to criticize them because it is a kind of bureaucratic endeavour, with no clear

1Science, technology, engineering and mathematics.
2This can change, however, with the emergence of individuals that are so rich that they can invest their

money as they want, on moonshot problems. There are more and more non-for-profit research institutes in the
Bay Area.
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output. I believe it is going to be better and better with time, because people will automatize
the dull part with AI tools, leaving time for researchers to focus on idea development, study
of litterature, and question formulation, which is the interesting and fruitful part of a grant.
Making a grant will be about making a project, with clear references and objectives as bullet
points, and letting AI tools write the grant for you. (On the other end, probably, people will
use AI tools to get concise summary of the text of the grant, under the form of bullet points.
Of course this is stupid and this is why we call it bureaucracy). So I am quite optimistic on
this question, and the same holds to some extent for paper writing.

What does academia has to offer to people and to society?

In academia you have certain advantages that you may not encounter in the corporate world:

• Curiosity: You have more freedom to choose your research topic and follow your inter-
ests. You have a bigger variance of personal experiences than if you work for a company.

• Glory: While the recognition may be limited to the academic community, your work is
personally attributed to you, your lab may bear your name. If you excel, you might
receive awards and media attention, and in exceptional cases leave a lasting legacy.

• Belonging: You are part of a community, and you have the opportunity to be someone
in this community, and shine.

However, pursuing a career in academia often requires some sacrifices:

• Work-life balance: Striking the perfect balance between work and personal life can be
challenging in the world of research.

• Geographical stability: Opportunities may be scarce and require frequent relocation,
limiting your choice of where to live. Mobility grants (such as Marie Curie) explicitly
require you to change countries, which is both unnecessary and harming.

• Financial compensation: While money may not be the primary motivation of every
individual, the financial rewards in academia are often modest, especially considering
the extensive education required.

• Personal life: Raising a family can be more difficult due to demanding work schedules
and frequent moves.

• Choice of colleagues: In the corporate world, engineers have the option to work in
various environments and with diverse groups of people, providing flexibility and variety
in professional relationships. You cannot do so in academia.

While this analysis might seem excessively negative towards academia, the thing is that, glory
is cool3, even in very moderate amounts. The freedom to choose a research topic, in my opin-
ion, is vastly overrated: Curious people can develop a passion about everything. One should
also note that many drawbacks (salary, choice of city) can be mitigated if you excel in your
field. World renowned experts can work wherever they want, and top research institutes will
be ready to pay a lot of money to attract them. This explains why some people still opt for
academia despite seemingly better professional opportunities. However, I have to notice that
researchers were generally better-off 30 years ago and we should collectively question why the
situation has deteriorated. If it continues to do so, research will eventually fail to attract and

3Yes glory is cool.
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retain top talents.

As I said before, the culture of the workplace you evolve in will depend greatly on the kind of
endeavour you are pursuing. It seems obvious to me that not everyone is made for traditional
corporate roles or management positions. Some people are more introverted, hard to manage
and solitary. Though brilliant and productive, they cannot really fit in an organized team,
and would be terribly unhappy working in a company. Contrary to company cultures that
requires to fit into a certain mould, academia accept everybody as he is, and the diversity of
personalities in research is very high. Research provides a setting that enable these individuals
to flourish and contribute meaningfully to society by advancing knowledge in their respective
fields. This is a great thing in academia.

Lastly, academic research serves as a vital conduit for preserving and disseminating knowledge
and new methodologies, both in academia and in industry. Through research publications,
conferences, and collaborations, researchers share their findings and insights with the wider
academic community, fostering the continuous growth and refinement of collective knowledge.
This process also promotes interdisciplinary collaborations, stimulating the development of
innovative solutions to tackle complex problems. Academic research is useful, and plays an
irreplaceable role in the ongoing expansion of human knowledge.

Is a PhD worth it ?

After having given all the good aspects of following a doctoral program, an inevitable ques-
tion emerges: Is it not possible to acquire this knowledge while employed in a company, and
potentially enjoying a superior remuneration? I firmly believe that people study for too long
in our society, and that it hurts us as a whole, as people are not really able to start building
their life before the end of their studies. My two grand-mothers had three children at the
age I will earn my PhD, which makes them vastly more adult and accomplished than I am,
objectively. Our societies are in a demographic winter, and it is a problem that we will need
to solve if we do not want to be obliterated in years to come. The society would be better-off
if talented people marry early and create families, instead of privileging doing endless stud-
ies just to add ”PhD.” at the end of their linkedin profile. The academic game is nice, but
having children is a greater achievement than publishing papers, even Nature or
Science ones. Thus, if you are close to 30 years old, I would say that starting a PhD is not
the best decision you can make. Some things are priceless and should not be sacri-
ficed. A PhD is not one of them. There is a life beyond studies, or at least there should be.

However, we should note that the current work scene appears bleak. The opportunity cost of
embarking on something unconventional like a PhD, is practically at an all-time low. If you
are young, I would still encourage you to start a PhD, preferably right after a Bachelor. I did
mine in 3 years. 4 years seems like a good duration. 5 years looks reasonable, and 6 years is
too much.

There is a dichotomy to be made between hard and simple problems, or, in corporate terms,
between labour-intensive and high value-added jobs. If you are doing a labour-intensive
job, solving problems many other people could solve, to be more successful you
do not need to be the most clever person, but just the most efficient, focus, and
hardworking one. This is a bad idea. The perfect example is consulting. In consulting,
you solve problems that all your collegues are able to solve as well. Thus, the only way
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to make a difference is by working long office ours at a high pace, sacrificing every other
aspects of your life. Engineering and research can allow you to extract yourself from this
fray, if you are particularly gifted you can differentiate yourself by your vision rather than
by your hardworking capabilities. Given the global competition that characterizes today’s
world, it becomes increasingly essential to differentiate yourself from the crowd. Among other
things, a successful PhD can help you provide you this differentiation, and land into these
high value-added jobs.

Why we should stop writing theses

The system of doctoral dissertation is an heritage of the medieval system. It originates from
the early middle ages, in the 12th century in the university of Bologna in Italy and the Uni-
versity of Paris in France. The PhD thesis became a standard in the 19th century. Two
precursors were the Humboldt University of Berlin, and Yale University in the United States,
which introduced the PhD degrees, that required writing a dissertation based on original re-
search. Over time, the nature of the thesis has evolved from a demonstration of knowledge
in the field to a requirement to produce original research. It was viewed as a way for the
candidate to contribute new ideas and knowledge to their area of study.

However, today every worthy new idea ends up in articles. People want to publish and share
results as soon as they are established, not least because of the global competition, that makes
people hurry to be the first ones to publish results, for fear from being scooped. Nobody wants
to wait till the end of the PhD to share results to the community. Now, we are in a next stage,
where we cannot even bear the time needed to peer-review papers. Thus, we put preprints
on servers, and do a thread on Twitter, and can start immediately to talk about that with
the other persons of the academic community.

How many doctoral dissertations did I read during my PhD? Zero. I downloaded some, but
never took the time to delve into them. This is the biggest argument for why I think it is
useless. Across history, it seems that the utility of the doctoral dissertations has decreased
progressively with time, attaining something close to zero today. When I want an insight, I
want it fast. I prefer to do a quick research on google, ask a few questions to chatGPT, watch
a talk on YouTube, or spend the morning to read 2/3 articles and reviews in depth if I want
to learn something new. We just live in a world that is just too fast-paced for dissertations.
I think this is a huge argument that has to be made, that was already valid 10 years ago and
that is now more relevant than ever. One thing will just put the final nail on the coffin of the
uselessness of writing a dissertation: Large language models. If an algorithm writes better
than you, then you it would be stupid to not let him write things itself instead of loosing your
time writing something that will be less good. I clearly believe that you are reading one of
the last PhD thesis that is not written completely by a language model. World is going to get
weird. People in charge need to rethink this system completely, because it is obsolete since a
lot of time and it is getting more and more absurd.

1.2 A bit of Epistemology

1.2.1 Early-life crisis

After having sucessfully passed my competitive exams, at 20, I recall thinking that I had
studied a lot of math, and that it allowed me to understand many things. However, I felt that
I needed to explore other schools of thought to gain a deeper understanding of reality. Of
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course, my primary focus remained the sciences - I chose to major in quantum and statistical
physics - but I also had a lot of free time to read all sorts of books, and had some courses on
humanities included in my cursus.

The first course I took was called ”Philosophy of sciences.” I remember thinking, ”Can we
please study something else? I already spend the rest of my day studying science!” However,
looking back now, I believe it was one of the most significant courses in my curriculum. It
brought my attention to the very nature of what I was studying. While it’s not unusual to see
accomplished scientists delving into epistemology and the philosophy of sciences, I strongly
believe that this should be more of a norm than an exception. Every scientist, I assert, should
possess a deep understanding of the scientific method4. Pursuing a career in science makes
more sense if it is accompanied by curiosity about its meaning, its history, and its scope. The
intricacies of the scientific method, what science means, and the degree of certainty of our
work are crucial questions for everybody who consider himself a scientist.

Maintaining a balance between specialization and overspecialization is always a challenge. It’s
necessary to specialize, to gain genuine expertise on a specific topic, to understand its stakes,
problems, and controversies, and to formulate potential solutions in the hope of making a
significant impact. However, in doing so, it becomes difficult to set aside time to maintain
a broad enough perspective, to pay attention to topics that may seem only weakly related
but could hold unforeseen relevance to your immediate problems. As Pierre-Gilles de Gennes
once said, science should not be about ”knowing more and more about less and less.” Two
things are of importance: having a vision and possessing the technical skills to execute that
vision. But, the vision is the most important, especially in an era where computing, artificial
intelligence, and robotics will be more and more able to execute clearly expressed visions.

Public trust in scientists is lacking, a sentiment that I understand, unfortunately. I did my
PhD during the pathetic ”The Lancet” incident, where a top tier journal published a blantly
fake study in order to promote pharmaceutical interest. Regrettably, many scientists por-
tray a negative image in two distinct ways: Firstly, they seem overly confident in the value
of their work. Much like the media, scientists possess a finite stock of public attention and
credibility. Every time they make false assertions, they diminish some of it. Scientists often
find themselves in the peculiar position of being the best informed individuals in the world on
a particular topic, but still likely to be incorrect, simply because the questions we ask them
are incredibly challenging. We should be careful not to be too sure about the truths that our
science provides us. After all, as Richard Feynman said, ”Science is the organized skepticism
in the reliability of expert opinion”.

In spite of all that, scientific knowledge progresses at an incredible pace. Save for exceptional
individuals, individual humans have probably not a clear idea of where they are going. Most
people have a narrow vision, follow only their current interests, are influenced only by the
trends of their colleagues and friends, by a few serendipitous encounters, and from this orga-
nized chaos, a solid comprehension of many aspects of our world emerges. Even if the current
way of doing things is quite ”functional” in this sense, it is full of frictions, and I believe
we could do better if we strove for a clearer understanding of the fundamental purpose of
our discipline, the potential societal applications of our work and the methods by which we
establish facts and the truth value of these facts.

4What a strong assertion !
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With these considerations in mind, I will provide a brief introduction to biophysics and quan-
titative biology.

1.2.2 Scientific methods and The Scientific Method

I believe there is an objective reality and this is an act of faith

People tend, today, to oppose science and faith. I do not, and part of the reasons for not
opposing both is that I am conscious that everybody, when reasoning, do acts of faith all
the time. I believe that there is an objective reality, that is there independently of me. I
perceive things subjectively, from my senses, however. Ultimately, I cannot prove that I am
not trumped by my senses and by my brain. Identifying what I perceive as the objective
reality is an act of faith, that is the basis of the scientific inquiry: If the reality is objective, it
can be observed, described and explained. How can we differentiate between reasonable and
unreasonable acts of faith in life ?

One principle that supports an act of faith is Ockham’s razor, a philosophical guideline stating
that the simplest explanation for a phenomenon is most likely the correct one. As an exam-
ple, I believe, as an act of faith, that I am not the principal character of a video game full
of realistic NPCs (Non playing characters) only because I have an invariance by permutation
symmetry assumption: I assume that as people kind of look like me and act like me5, they
are real human with real feelings as me and not some cleverly engineered Trompe-l’oeil. This
is obvious, but this is still an act of faith.

The belief in an objective reality can be traced back to the beginnings of human civilization,
when ancient philosophers and early scientists sought to understand the natural world and
its underlying principles. It is ubiquitous because it is quite natural: Occam’s razor tells me
that if all our senses and experiences is consistent with the fact that there are perceptions of
an underlying reality that is independent of me, it is natural to consider the hypothesis that
there is indeed an objective reality. Assuming that there is an objective reality, let’s see how
people strove to make sense of it.

The history of do your best accross the ages

Science is simply explaining the nature and the rules of this objective reality. The process
of understanding and describing it has evolved throughout history, with various approaches
being developed to systematically investigate and explain natural phenomena. What method
should we use? The historical approach has always been the following one: do your best!
In ancient times, greek philosophers, starting with Aristotle and Plato discovered the rules of
logical reasoning, they started to establish truth by writing dissertations, arguing to convince
others of their points. They did, in a word, philosophy. They naturally applied this method
to understand the natural world, giving birth to ”natural philosophy”, seeking to uncover
the principles governing reality through observation, contemplation, and logical reasoning.
Natural philosophy laid the groundwork for the development of modern science, as it encour-
aged the exploration of objective reality and the search for underlying patterns and principles.

Then, little by little, this approach solidified itself around one fundamental principle: falsifia-
bility. This is a bit a renunciation, that stems from the fact that it is not possible to establish
the truth directly, from the first try. Reality is complex, and its modelling need to be refined
iteratively, through a trial-and-error process, during which we realize a never-ending series of

5Though a lot of people act like NPCs I have to say.
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steps to formulate, test, and refine hypotheses. This is the formalized, pragmatic version of
the historical approach to explain reality: do your best. The key steps of the scientific method
include:

• Observation and description of phenomena

• Formulation of hypotheses

• Experimental design and data collection

• Data analysis and interpretation

• Replication and refinement of knowledge

By following these steps, scientists can develop and refine theories that accurately describe
objective reality, while remaining open to the possibility of revising or discarding these the-
ories in light of new evidence. In this framework, mathematical modeling is very interesting
because it allows to perform quantitative predictions. We can directly assess the validity of
our model, i.e our description of the phenomena, by making quantified predictions, that we
can confront to our data, obtained from experiments. However, it is neither sufficient nor
necessary to use mathematics. Some disciplines use mathematics to make predictions that
are not falsifiable, and thus are not sciences. Falsifiability, and not numerical quantification,
is the root of scientific method.

Let’s note immediately that in order to refine iteratively our hypotheses, they need to be fal-
sifiable. This can not be applied to everything, and characterizes the disciplines that we can
call natural sciences. Scientific method is a very effective ways to establish accurate models of
reality. However, it is not the only way to describe it, and there are a lot of other methodolo-
gies, adapted to each domains, which corresponds, in their own manner, to the initial motto
of do your best.

Certain fields diverge from the scientific method either because their subject matter is not
amenable to empirical investigation or because they use distinct methodologies to address
their inquiries. For instance mathematicians derive and prove theorems through logical de-
ductions from established axioms or principles. Philosophy, does the same, at its humble
level, and employs critical thinking and logical analysis rather than empirical observation or
experimentation, in a more loose way than mathematics, but to tackle abstract questions that
are more interesting for us humans.

Another good example is given by History. While it can incorporate empirical evidence
in the form of primary and secondary sources, it follows a methodology distinct from the
scientific method. Historians focus on understanding and interpreting past events, societies,
and cultures, often engaging in qualitative analysis and narrative construction. The scientific
method’s emphasis on controlled experimentation and reproducibility is not applicable to
historical inquiry, as past events can’t be directly observed or replicated. Although these
disciplines do not strictly adhere to the scientific method, they have rigorous methodologies
and make significant contributions to human knowledge. The variations in methodologies
reflect the diverse nature of the questions and subjects these disciplines aim to address. Each
field offers a unique approach to comprehend the complexities of reality in the best possible
way.
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Science gives us a self-consistent network of models

A question arise when employing the scientific method: When we develop a model A to make
predictions about a physical quantity, we ultimately compare these predictions to experimen-
tal results. However, mathematically speaking, measuring a physical quantity involves fitting
the parameters of another model, called model B. In this scenario, we are comparing the out-
comes of two different models, not confronting a model with reality itself. Does this process
entail circular reasoning, and is it contradictory?

To address this concern, we must first acknowledge that all measurements and observations
are influenced by our comprehension of the experimental apparatus and the physical princi-
ples governing it. Developing a model to describe the experiment (model B) requires making
certain assumptions and approximations based on well-established principles and previous ex-
perimental findings. This provides us with confidence in the reliability of model B. Moreover,
when comparing the predictions of model A and model B, we are not simply attempting to
prove one model right and the other wrong. Rather, we are examining the degree of agreement
between the two models. If their predictions align well, it suggests that model A is a good
representation of the physical phenomenon under study, given the accuracy and reliability of
model B. If a significant discrepancy exists between the predictions, it could indicate that
either model A, model B, or both are incorrect or incomplete. In such cases, further investi-
gation is needed to identify the source of the discrepancy and improve the models.

In essence, the comparison of models is not circular reasoning but a way to continuously refine
and improve our understanding of the physical world. By comparing model A with model
B, we can pinpoint areas where our knowledge may be lacking, which in turn leads to the
development of new theories or experimental techniques. This iterative process of testing and
refining models lies at the core of the scientific method, helping to construct a robust body
of knowledge grounded in empirical evidence and theoretical reasoning. In conclusion, while
comparing theoretical predictions with experimental results involves contrasting two models,
it is not inherently circular reasoning. The whole field of natural sciences is building a self-
consistent and interconnected network of models that describes a plethora of observed natural
phenomena. The ultimate goal of science is to develop a comprehensive understanding of the
natural world, and this network of consistent interconnected models serve as a foundation for
that understanding.

1.2.3 Physics, Modeling and Biology

What is physics ?

Physics is a natural science that seeks to understand and describe the fundamental laws gov-
erning the behavior of matter and energy in the universe. It encompasses a wide range of
phenomena, from subatomic particles to the largest structures in the cosmos, and includes
both theoretical and experimental approaches. In physics, there is a distinction between
fundamental (or microscopic) and mesoscopic/macroscopic approaches. Fundamental physics
aims to understand the most basic building blocks of matter and their interactions, such
as particles described by quantum mechanics and their governing forces. Meso/macro ap-
proaches, on the other hand, focus on large-scale phenomena that emerge from the collective
behavior of many particles. Examples of meso/macro approaches include fluid mechanics,
which studies the motion of fluids, and thermodynamics, which investigates the relationships
between heat, work, and energy in systems.
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Statistical physics, the branch that I love the most, is an area of physics that attempts to
bridge the gap between fundamental and mesoscopic/macroscopic approaches by providing
a framework for understanding the behavior of large ensembles of particles. It combines the
microscopic laws of motion with statistical methods to derive the macroscopic properties of
systems, such as temperature, pressure, and entropy. This approach has been particularly
useful in explaining the properties of complex systems, including those found in biophysics,
where the collective behavior of numerous molecules gives rise to emergent phenomena.

Biophysics is a bit an ill-defined topic. It is the study of the physics of biological objects. As
these objects can range from a few nanometers (proteins, DNA, RNA) to a few meters (or-
ganisms), there is a wide array of physics associated with them. Biophysics applies concepts
from classical and quantum mechanics, thermodynamics, statistical physics, and other areas
of physics to the study of biological molecules, cells, tissues, and organisms. It occupies a
unique position within the broader field of physics, as it applies physical principles to under-
stand the behavior of biological systems. Biophysics leverages insights from both fundamental
and mesoscopic/macroscopic approaches, often drawing on statistical physics to describe the
complex interactions and emergent phenomena that characterize life at various scales.

Quantitative biology and biophysics are closely related fields with some key differences. Quan-
titative biology primarily focuses on the application of mathematical and computational tools
to analyze and model biological data, striving to provide a quantitative description of specific
biological phenomena. Biophysics, on the other hand, aims to uncover the fundamental phys-
ical principles governing biological systems and processes, often seeking common rules and
patterns between various biological phenomena. While both fields share the goal of achieving
a deeper, quantitative understanding of biological phenomena, their approaches and primary
objectives differ, with quantitative biology emphasizing data analysis and modeling, and bio-
physics focusing on understanding the underlying physical principles.

What is biology ?

Biology, the study of living things, covers an extensive spectrum of sub-disciplines, ranging
from the microscopic molecular interactions to macroscopic systems. In biology, the funda-
mental units of study are the basic building blocks of life - cells, genes, and proteins - and
their interactions. These microscopic components give rise to diverse and sophisticated forms
of life, from single-celled organisms to intricate multicellular organisms such as plants and
animals. Biologists both investigate these building blocks and strive to comprehend the emer-
gent properties arising from the collective behavior of biological components at various scales.

Because of its richness, it is hard to class biology as a whole into the realm of soft or hard
science. Biochemistry disciplines such as structural biology and genetics lead to reproducible
experiments, whereas in cell biology and systems biology, researchers deal with highly variable
systems, that makes the experiments less reproducible, and thus less falsifiable. Therefore,
they adopt another approach, utilizing various complementary methods to validate their the-
ories, falling into the realm of soft science. Yet, all across biology’s diverse spectrum, one can
observe a transition towards more rigorous scientific methodologies, in order to have a more
reliable, robust understanding of life. This is made possible by the use of cutting-edge tech-
nologies such as genomics, proteomics, and advanced imaging techniques, as well as methods
from other disciplines like physics, chemistry, and computer science. These approaches, as a
whole, are often described under the generic terms of quantitative biology of biophysics.
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Models and mathematics

A model, within the framework of the scientific method, is a simplified representation of a com-
plex system or phenomenon. This description can be of several natures, symbolic, relational,
but it will always, eventually, be represented by mathematical objects. The model offer an
unambiguous representation of the phenomena under investigation, allowing to explain which
quantities intervene, and the nature of the relation between each quantities. Formalizing these
relations mathematically, through the use of equations, allow to make predictions, and thus
make these models falsifiable, making them a perfect building blocks of the scientific method.

There are numerous way to describe mathematically physical systems. Such systems can be
deterministic or stochastic, static or evolving with time. Popular methods include systems
of differential equations, like Partial Differential Equations (PDEs) or Ordinary Differential
Equations (ODEs). Classical equations, such as the heat equation or Navier-Stokes equa-
tions, form a part of the curriculum for every physics and mathematics student due to their
widespread relevance.

A physicist who is familiar with these classical equations can bring valuable insights to bi-
ological data. By ”knowing its classics”, it can make hypotheses about the physical models
governing the system early on. This early hypothesis formulation is vital as it guides sub-
sequent investigations and the design of experiments aimed at validating or refuting these
hypotheses. However, the creation of a model is only the first step. Physicists have also a
valuable expertise in mathematics, computer science, that is useful to analyze the data further.
A fundamental methodological difficulty encountered by the physicist is that many equation
systems could potentially describe a given system, necessitating extensive testing of the model
to confirm its accuracy. As Von Neumann famously stated, ”With four parameters I can fit
an elephant, and with five I can make him wiggle his trunk,” indicating the importance of
thorough testing and validation of models, as redundancy in validations reduces the chance
of overlooking a key element in the model.

Model creation has thus transformed natural sciences into data-centric disciplines. This data-
centric approach is especially evident in biology, where the inherent variability demands ex-
tensive data for validation. To affirm the significance of their data and not just consider it an
artifact of experimental variability, researchers often rely on statistical tests. Consequently,
laboratories have specialized in various data acquisition methods, such as sequencing, omics,
mass spectrometry, and imaging (microscopy), to answer fundamental questions.

But is it reasonable to believe our systems will always follow simple models?

Why mesoscopic and macroscopic systems can or cannot be described by simple
equations

The reason for which one can hope to describe complex systems using equations is quite
straightforward: our universe’s smallest building blocks, atoms, electrons, and other elemen-
tary particles, follow mathematical equations in a manner that can seem almost magical (cite
the unreasonable effectiveness...). These elementary components, in turn, constitute the larger
mesoscopic objects that we want to study, be it macromolecules such as proteins, DNA, lipids,
or bigger objects. This means that the behavior of these larger systems is described by the
integration of the behaviors of their individual components. Therefore, if the building blocks
follow mathematical equations, the systems composed of these blocks will also naturally fol-
low mathematical equations. However, these equations can range from simple to incredibly
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complex.

In some cases, the macroscopic behavior of a system can be described easily. This is the case
in Thermodynamics, where the state of the system can be described with a finite number of
observables such as heat, work, temperature, or entropy, related with themselves with three
laws of thermodynamics. The simplicity of this coarse-grained behavior can be explained by
the kinetic theory of gasses, which explain successfully the macroscopic properties of gases in
terms of the microscopic behaviors of their molecules. The theory was substantially developed
by James Clerk Maxwell and Ludwig Boltzmann in the latter half of the 19th century. They
assumed that a gas consists of a large number of tiny particles in constant motion, colliding
with each other and the walls of their container. The movement, tough deterministic, exhibit
chaotic dynamics that has the same statistical properties as a random motion, and can thus
be considered as such. From this assumption, they were able to derive the ideal gas law and
explain macroscopic phenomena such as pressure and temperature.

However, in other cases there is no way to predict the behavior of a complex systems. Some-
times, non-linear dynamics and chaotic systems do not lead to a statistical distribution that
can be easily averaged as in the case of perfect gasses. This brings us to the concept of
computational irreducibility.

1.2.4 Complex Systems

Reductionnism and Computational Irreducibility

First introduced by Stephen Wolfram in his work on cellular automata, Computational irre-
ducibility, is a concept that describes systems for which there are no shortcuts to predicting
future states. To know the system’s state at time t, you have to simulate all the steps from the
initial state up to time t, regardless of the simplicity or complexity of the initial conditions.
The behavior of these systems cannot be ’fast-forwarded’ using a mathematical formula or
algorithm. Instead, one has to follow the system’s evolution step-by-step to understand its
behavior.

Computational irreducibility is common in complex systems, and should be encountered in
many biological systems, where a multitude of factors interact in nonlinear and often unpre-
dictable ways. Biophysics seeks to find simple and general principles behind the complexity
of biological systems, by capturing their essential features into simplified models. When a
system is computationally irreducible, it means it cannot be described into a simpler form
without losing essential information about its behavior. Therefore, any attempt to create a
simplified or ’compressed’ model will inevitably fall short in capturing the intricacies of the
system’s behavior.

On the other hand, quantitative biology aims to capture the full complexity of biological
systems in their models, often leading to models that are as complex as the systems they
represent. While these models may be more successful in capturing the behavior of compu-
tationally irreducible systems, they suffer from a lack of generalizability. The models become
too tied to the specific system and conditions they were designed for and may fail to provide
insights that can be applied more broadly.

Therefore, the concept of computational irreducibility adds an extra layer of challenge to
both fields. It limits the ability of biophysics to find general laws, and at the same time,
it reinforces the complexity and specificity that quantitative biology tries to capture. Un-
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derstanding computational irreducibility, thus, provides important insight into the nature of
biological systems and the limitations we face when trying to model them.

Can we still study these complex systems ? Is the concept of falsifiability doomed? Not
entirely. While the overall system may resist simple falsifiable hypotheses due to its irreducible
complexity, we can still apply falsifiability to the individual building blocks. Despite the
complexity of the overall system, rigorous analysis requires a reductionist approach. By
understanding the individual components and the equations governing them, we can gain
insight into the integrated behavior of the whole system, no matter how complicated it may
appear. We will discuss later about reductionnism. First, we will discuss about the cases
where a complex system can be simplified.

Principled ways to simplify a complex system

When confronted to a complex system composed of thousands of elements, one might an-
ticipate an equally complex description of their behavior. However, intriguingly, many such
systems’ collective behavior can be described by relatively simple macroscopic equations. Bi-
ological systems are characterized by their stability and their reproducibility. In a way or
another, the extreme reproducibility of our development means that all the potential chaotic
dynamics that would lead to sensitivity to noise or to initial conditions are selected negatively
through evolution. Each sensitive developmental and biological steps are buffered efficiently,
which gives good reason to believe that biological systems can be simplified and coarse grained,
and will not be subject to computational irreducibility, and could be simplified. In statistical
physics, this simplification is made possible due to several key factors: symmetry, conserva-
tion laws, emergence of dominant interactions, separation of scales with coarse graining, and
statistical averaging.

Symmetry plays a pivotal role in simplifying our understanding of the system. Often, the
intricate microscopic interactions within these systems exhibit certain spatial, temporal, or
fundamental property-related symmetries. From symmetries results conservation laws, such
as those of energy, momentum, and charge, that constrain the possible outcomes of particle
interactions, reducing the complexity of the governing equations.

Moreover, many systems display dominant interactions that dictate their macroscopic behav-
ior. When these interactions significantly outweigh others, they effectively characterize the
system, allowing for a streamlined description. For instance, the macroscopic behavior of
a gas can often be described by the ideal gas law, largely attributed to dominant particle
collision interactions.

The separation of scales and the practice of coarse-graining also serve as critical facilitators
of simplification. When a clear divide exists between the microscopic and macroscopic phe-
nomena, the system’s behavior can often be streamlined using coarse-graining techniques. By
concentrating on macroscopic properties, the intricate details of microscopic interactions can
often be overlooked, leading to simpler governing equations.

Statistical averaging is another powerful tool in simplifying system behavior. With an increase
in particle numbers, individual behavioral fluctuations tend to cancel each other out. This
cancellation results in the emergence of stable, predictable macroscopic properties that can
be described by far simpler equations.
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Though these principles offer considerable simplification, it’s crucial to remember they may
not always apply. Complex systems can indeed exhibit complex behavior, resistant to these
simplifying techniques. However, in a significant range of scenarios, they allow us to de-
scribe systems of thousands of protons and electrons using remarkably simple macroscopic
equations. Thus, the science of statistical physics and complex systems, with its focus on
emergence, serves as an integrating bridge, amalgamating reductionist insights to simplify
and understand complex system behavior.

A fascinating thing is that many model-design principles that we explained in this paragraph
are at the basis of data-compression algorithms, showing the great unity in the mathematical
nature of our reality. Symmetries directly relates to Fourier Transform, and the closely re-
lated Discrete Cosine Transform, at the basis of the JPEG image-compression algorithm [1,2].
Besides, coarse graining shares deep analogies with the wavelet transform [3], that is a funda-
mental building block of many state of the art compression algorithms. In the next section,
I will do a short introduction of information theory, showing how this perspective allows to
draw a clear link between Biophysics and Quantitative Biology, and showing how it can shed
light over future important advances in biology.
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1.3 Insights from Data science and Information Theory

We will finish this discussion about epistemology by delving into information theory, mo-
tivated by its central role in Erwin Schrodinger’s definition of life [4], where the notion of
entropy takes center stage. This exploration will help us clarify what we are looking for when
studying biological systems, by giving a definition of a model, and to provide a framework
for distinguishing good models from poor ones. By examining these concepts, we will clar-
ify the distinction between biophysics and quantitative biology, underscoring their respective
roles in our understanding of life. Moreover, these reflections bear significant implica-
tions for our ongoing efforts to construct intelligent systems capable of replicating
human-like scientific reasoning and inquiry, which is the most important practi-
cal progress in science that we will witness in our lifetime, unlocking many others.

1.3.1 Information and Entropy

The field of information theory is deeply intertwined with the concept of entropy, a concept
that originates from thermodynamics and statistical physics. Information theory was born
in the mid-20th century, when Claude Shannon, a researcher at Bell Labs, sought to define
a quantitative measure of information. In his seminal 1948 paper, ”A Mathematical Theory
of Communication” [5], he introduced the concept of entropy as a measure of the amount of
uncertainty or randomness in a set of data. This dataset can be described by an ensemble
X , called the dictionnary, and a distribution of probability p : X 7→ [0, 1]. Then Shannon’s
entropy is defined as:

S =
∑
x∈X

p(x)log(p(x)) (1.1)

Borrowing the term ”entropy” from thermodynamics, Shannon’s entropy was a way of measur-
ing the average information content of a message, that is, the degree of surprise or the amount
of new information a particular message provides. A highly predictable message carries little
new information and thus has low entropy, while a less predictable message carries more new
information and thus has higher entropy. Shannon’s entropy shares many formal properties
with the concept of entropy in statistical physics, especially as it was developed by Ludwig
Boltzmann [6]. In Boltzmann’s interpretation, the entropy of a physical system is a measure
of the number of possible microscopic states that could give rise to the observed macroscopic
state of the system. A more disordered system has more possible microscopic configurations,
and thus higher entropy, while a more ordered system has fewer possible configurations, and
lower entropy.

The parallel between the concepts translates into a parallel between the mathematical form
of Shannon’s entropy and Boltzmann’s entropy formula. Both take the form of a sum (or
integral) over states, where each term is the product of the probability of a state and the
logarithm of that probability. This logarithmic dependence signifies the multiplicative accu-
mulation of possibilities in both systems - combinations of messages in information theory,
and arrangements of particles in statistical physics.

Shannon himself noted the analogy between his measure of information and thermodynamic
entropy, even consulting with the eminent physicist John von Neumann about the appropri-
ateness of the term ”entropy” for his measure. Von Neumann reportedly agreed with the
analogy, stating that the two concepts have a similar uncertainty property. The link between
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information theory and statistical physics was deepened by Edwin Jaynes in the 1950s [7],
who advocated for the principle of maximum entropy as a method of statistical inference.
He proposed that, when choosing among probability distributions that represent our state of
knowledge about a system, we should select the distribution that maximizes entropy, subject
to whatever constraints are imposed by the information we have [8].

Information theory and statistical physics share a rich historical and conceptual connection,
centered around the fundamental concept of entropy. We will now explore some insights
provided by this conceptual framework.

1.3.2 Information theory, definitions and models

Aristotle, Aquinas and Shannon

A more practical introduction to the theory of information can be explored with the concept
of definition. The traditional view of the definition of Aristotle and Aquinas can be revisited
very elegantly using information theory.

According to Aristotle, a definition is a phrase that signifies the essence of a thing. It consists
of the genus (or category) to which a thing belongs and the differentia, which distinguishes
the thing from all other members of the genus. In his works, such as The Categories [9] and
Posterior Analytics [10], he has written extensively on the nature and roles of definitions. For
Aristotle, the goal of a definition is to provide insight into a thing’s nature and to categorize
it according to its natural place in the hierarchy of things. In the Aristotelian approach, a
definition is intended to be a reflection of the objective nature of the entity in question. For
example, a human being might be defined as a ’rational animal’, with ’animal’ as the genus
and ’rational’ as the differentia, distinguishing humans from other animals.

Figure 1.1: Aristotle, among other things, was a pionner in embryology.

In his work De Ente et Essentia [11](On Being and Essence), Saint Thomas Aquinas expanded
upon Aristotle’s understanding of definitions and discussed the concept of a thing’s ”essence”
or ”quiddity”. For Aquinas, a definition was intended to describe the essence of a thing, which
is its fundamental nature or ”what it is.” The essence of a thing comprises those characteris-
tics that make the thing what it is and without which it would not be that thing. In other
words, it is the necessary attributes or properties of a thing, which cannot be removed without
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making the thing cease to be what it is.

Figure 1.2: Saint Thomas Aquinas was very cultivated and well advised, but never heard about
entropy and information theory. Painting from Jacopo Vignali.

Aquinas made a clear distinction between a thing’s essence and what he termed ”accidents.”
In Scholastic philosophy, from which Aquinas drew, accidents are those properties or charac-
teristics of a thing that are not essential to its nature. They are non-essential attributes that
do not change the identity of the being even if they change. For example, a human might
change in size, age, or color, but still remain human. Those are accidental properties, not
essential ones. So, according to Aquinas, a definition seeks to capture the essence of a thing
without the accidents. It does not include any accidental or non-essential characteristics that
might vary from one individual to another or change over time within the same individual.
By focusing on the essence, a definition attempts to describe what is most fundamental and
universal about a thing, thereby giving us a deep understanding of its nature.

It’s worth noting that Aquinas also distinguished between ”essential accidents” which are those
closely related to the essence (such as the ability to laugh in humans) and ”pure accidents”
which are entirely arbitrary and not connected to the essence (such as hair color). Despite
this, for a strict definition, only the essence of the thing, without any accidents, is considered.
The notion of accident introduced by Saint Thomas Aquinas is exactly the notion
of uncertainty, or randomness, of Shannon. We have a set of data that takes values into
a dictionnary X , and that follows a certain distribution p, and giving a definition is finding a
way to summarize this distribution in a relevant manner.

Some examples brought from biology

Last paragraph was a quite abstract discourse, that we will revisit using concrete examples.
First, for a precise physical object, the definition can be extremely clear and unambiguous.
For example, here is the definition of DNA on the Thesaurus:

• Deoxyribonucleic acid: an extremely long macromolecule that is the main component of
chromosomes and is the material that transfers genetic characteristics in all life forms,
constructed of two nucleotide strands coiled around each other in a ladderlike arrange-
ment with the sidepieces composed of alternating phosphate and deoxyribose units and
the rungs composed of the purine and pyrimidine bases adenine, guanine, cytosine, and
thymine: the genetic information of DNA is encoded in the sequence of the bases and is
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transcribed as the strands unwind and replicate.Compare base pair, gene, genetic code,
RNA.

Figure 1.3: Desoxyribonucleic acid can be defined very clearly and without ambiguity.

However this is not the case with every concepts. When you open a dictionnary, you will usu-
ally find several definitions for a given word. Let’s take the word Life. The Thesaurus gives not
less than 27 definitions. Let’s consider the 5 first: 1-the condition that distinguishes organisms
from inorganic objects and dead organisms, being manifested by growth through metabolism,
reproduction, and the power of adaptation to environment through changes originating in-
ternally. 2- the sum of the distinguishing phenomena of organisms, especially metabolism,
growth, reproduction, and adaptation to environment. 3- the animate existence or period of
animate existence of an individual. 4- a corresponding state, existence, or principle of exis-
tence conceived of as belonging to the soul. 5- the general or universal condition of human
existence. etc...

The crucial point is that any of these 5 definitions kind of ”do the job”, but if you consider all
these definitions altogether, you will end up with a way-better notion of what is life than with
any of these 5 definitions. Life is a blurry concept, that encompasses many notions. As with
Aquinas view, we see that a definition is a compression of information. If you compress
the information to a greater extent, you will loose in precision or generality: you will have
a definition that encompasses a smaller number of realities, or that characterises them less
precisely.

A first reason for this is polysemy: a word can have several meanings, that are loosely related
which each other. A second reason is more fundamental, and related to the information con-
tent. The efficiency of the compression of some data depends on the information contained in
this data, of its regularities, of its symmetries, independently of the talent of the person that
is in charge of giving a definition. It is easy to give an exact definition of planet Earth, the
hydrogen atom,or of a chair, because they describe objective realities of the world. However,
the concept that I took, life, is intrinsicly difficult to define, because this concept contains
much more information. As do love, passion, or happiness, which are all tied to personal
experiences of life, that varies for each individuals.

In his book ”What is Life?” [4], Erwin Schrödinger attempts to provide a physicist’s per-
spective on the nature of life. Schrödinger proposes that life can be described as a system
that maintains order and resists the natural tendency towards disorder, or entropy. He intro-
duces the concept of ”negative entropy” or ”negentropy” as a characteristic of living systems,
which are capable of extracting energy from their surroundings to maintain their order. While
Schrödinger’s definition of life can encompass many living organisms, it may not include cer-
tain life-like forms, including viruses, or self replicating entities such as RNAs, cristalline
structures or even computer programs.
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Schrödinger’s definition of life, while influential, is not universally accepted, and modern
definitions of life have evolved to consider additional characteristics, such as reproduction,
metabolism, and cellular organization. Biologists argue about the definition of life, but in
the end, nobody is wrong, and everybody is right. A definition compresses the information,
which means that all the information that we have at the beginning will have to be summed
up in a few words, or in a book. You will have to squeeze the richness of animals, vegetals,
mushrooms, parasites, archeas, bacteria into a few words. A definition is a model of a concept,
and as in every model, you have to ask yourself Aquinas eternal question: what part of the
information is essential, and what part is not ?

1.3.3 Biophysics versus Quantitative Biology

Previously, I drew a distinction between biophysics and quantitative biology. These terms are
used in a very loose manner, interchangeably, and I will try to disolve some imprecisions of
language by showing that though they are interrelated disciplines, each present unique goals
that often generate a fundamental divide. Biophysics pursues the discovery of unifying prin-
ciples that govern biological phenomena, striving to unify diverse observations into a single
theoretical framework. In contrast, quantitative biology is committed to delivering a precise,
faithful, and quantified depiction of biological systems, with an emphasis on accuracy and
specificity.

This division becomes can be easily apprehended through the lens of model complexity. Bio-
physics favors compression, formulating simpler models that encapsulate the most pivotal
features of the data. Conversely, quantitative biology gravitates towards elaborate represen-
tation, expanding the model until it mirrors the observed data with utmost fidelity. The
tradeoff between generalization and precision shows that the notion of an ’optimal’ model
becomes subjective. ”All models are wrong, but some are useful” [12].

Biophysics Quantitative Biology

More compression Less compression

Fidelity to input data

Less sensitive to noise More sensitive to noise

Figure 1.4: Noise limits the horizon of quantitative biology, stressing the need for high-throughput
experiments to access to a higher fidelity.

I said that choosing between biophysics and quantitative biology is a matter of choice, but
what could draw this choice ? Humans naturally wants to convert the complex realities
that they are observing into an understandable simplification, the famous textbook picture,
namely Biophysics (A professor once told me ”With a good PhD, a student has the opportunity
to change one figure of a textbook of biology. This is amazing !”). Another cultural aspect
is that of mathematically litterate people who study biology are physicists that comes from
related fields such as soft-matter or optics, that are naturally enclined to seek for general
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principles.

However, there are also technical reasons that drive this choice. When it comes to modeling
a biological phenomenon, answering the question, ”What level of compression is too much?”
is challenging. An easier question to tackle is, ”What level of compression is not enough?”
Here, we have a clear metric: ”How well does the model reproduce your data?” As you add
parameters to your model, its ability to reconstruct your data will improve. However, at
some point, this metric will plateau, indicating that there’s no additional value in further
complexifying the model. In biology, the data tends to be quite noisy, so this plateau occurs
rather swiftly.

Another technical reason, that is here to stay, is our reliance on model systems and organ-
isms. Researchers study creatures like Drosophila or Zebrafish not only because they are
intrinsically interested in their biology. These organisms are favored because they are inex-
pensive, amenable to genetic manipulation, subject to fewer regulations, breed quickly, and
possess structures or genes that we can relate to our own through homology. While the pre-
cise quantitative behavior of these biological systems may diverge from ours, the fundamental
principles they illuminate could remain valid. Therefore, these principles form the focus of
studies involving these model organisms.

Figure 1.5: Dissecting Drosophila’s brain will allow to understand how drosophilas think, but most
importantly it will allow people to better understand how intelligence emerges from neuronal interac-
tions. From [13].

For this reason, the focus has been more on biophysics, and less on quantitative biology in
past years. This is poised to change, as every factors that were orienting towards biophysics
are changing rapidely. First, biology is really hard, and it is not sure that every processes are
understandable by humans. A good example of that is given by the marvelous complexity
of gene regulation networks, where redundancy and complexity is the norm rather than the
exception. It is absolutely possible that biologists will run out of understandable things to
study, and that they will thus have to study less tractable problems, without general principles.

Secondly, the industrial players in the big tech industry are becoming increasingly interested
in life sciences6. They will be driven by the therapeutic possibilities of biology, more than ex-
plainability and a desire to understand. A good example of that is given by disease prediction
based on scans [14]. With them, a lot of people with a different skillset, from Applied-maths
and Machine learning, are comming into the field. Statistical Physicists as me are uniquely
positionned in this field, as we borrow techniques from traditionnal physics but have very good

6A lot of rich people fear death
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understanding about the peculiarities of high-dimensional spaces. Additionally, the develop-
ment of high-throughput methods such as microfluidics and robotics has enabled researchers
to automate experiments and increase the volume of data. This in turn helps reduce the level
of observation noise.

Eventually the new progresses in stem cell cultures allow researchers to have easier access
to structures ressembling closely to mammalian embryos or organs, such as organoids, blas-
toids, and embryoids. These methods allow to perform high throughput experiments and gain
insights about human biology without the traditional difficulties encountered when dealing
with mammals. All these factors put together will probably lead to a golden age of quantita-
tive biology in years to come, but a side effect could be that biophysics could benefit from this.

Then, another key change is the advent of robotics and AI. I firmly believe that we will see
intelligent systems emerging very soon, and that these systems could greatly help us doing
better biology. To better understand how these systems could work and how they could help
us unravel the mysteries of life, I will first try to give a little introduction about how I believe
human think, and how silicon-based systems reproduce such tasks.

1.3.4 Intuition, Logic and high-dimensional data

High dimensional embeddings

I will start this paragraph by saying that I am not a specialist in cognitive science, and only
based this paragraph on what I read. I will thus be short and humble, but will nevertheless
try draw some principles to help design computational systems capable of intelligence.

Humans possess two ways of thinking. We are creatures guided by intuition, and are able to
do analogies between loosely defined and abstract concepts, but also able to perform rigorous
logical reasoning when needed. Daniel Kahneman and Amos Tversky, cognitive psychologists,
introduced the concept of ”System 1” and ”System 2”, and vulgarized in the book ”Thinking,
Fast and Slow” [15].

System 1 refers to our intuitive system, which is typically fast, automatic, effortless, implicit,
and often emotionally charged; it operates with little or no sense of voluntary control. This
system excels at making connections and detecting patterns, and it often relies on mental
shortcuts or heuristics to make quick judgments. It might correspond with the lower-level,
automatic computational processes that handle tasks like initial perception and basic asso-
ciative learning. System 2, on the other hand, refers to slower, more deliberate and effortful
processing. This includes activities that require attention, such as complex computations,
logical reasoning, and conscious decision-making.

Cognitive science often postulates a computational theory of mind, a paradigm widely agreed
upon to some extent. According to this view, mental processes can be considered compu-
tations on mental representations. Associated with prominent mid-20th-century figures like
Alan Turing [16] and Noam Chomsky [17] , this theory proposes that thoughts are com-
putations performed on mental representations of our experiences, comparable to software
processes in a computer. System 1 and system 2 would just be two different systems that
engage with these computations differently. System 1, through neural computations, gener-
ates abstract representations of objects, potentially in high-dimensional space, with the highly
constraining necessity of rapid processing [18–20]. System 2, on the other hand, allows us to
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manipulate these concepts by conducting abstract computations with them.

A key element in this perspective is the concept of abstraction: our minds construct abstract
models of the world, and we manipulate these models to understand and predict reality. The
level and form of this abstraction can greatly vary, ranging from simple rule-based systems to
complex high-dimensional representations, contingent on the cognitive task and context.

Figure 1.6: In our abstract representation of the world, the operation ”Cat + Glasses” make sense.
From [21].

Drawing parallels with artificial intelligence, some processes in machine learning models seem
to mimic aspects of these two systems. For instance, neural networks conducting tasks like
image or speech recognition could be viewed as operating in a ”System 1” way, extracting
patterns from high-dimensional data swiftly, automatically, and implicitly. In contrast, more
symbolic or rule-based AI models, which explicitly manipulate abstract representations to
execute logical reasoning, could be considered to operate in a ”System 2” manner. Yet, these
parallels aren’t flawless, and AI models still lack several human cognition facets, including the
seamless integration and mutual influence between System 1 and System 2, and the ability to
perform high-level abstract reasoning across various domains, among other things.

Interestingly, feedforward deep neural network architectures, inspired by our visual system’s
structure, have enabled a reverse analogy: We can attempt to explain the mind by under-
standing how neural networks form. In certain architectures, like GANs, diffusion models, or
AutoEncoders, the middle layer comprises a vector that holds a high-dimensional represen-
tation of the input data in a space termed the ”latent space.” In this abstract space, we can
conduct abstract operations such as ”Cat + Glasses = Cat wearing glasses” or ”King - Man
+ Woman = Queen.”

Figure 1.7: In the latent space of neural networks, abstract algebräıc operations leads to meaningful
results. From [21].

Yet, when we wonder whether human cognition involves computations in high-dimensional
spaces, like latent-space arithmetic in AI, the answer is not clear. Some aspects of human
cognition, like language processing, visual perception, and certain forms of memory recall
and imagination, are thought to involve computations in high-dimensional ”semantic” or
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”conceptual” spaces. However, human cognition also exhibits substantial flexibility, context-
sensitivity, and integration across different modalities and cognitive processes, aspects that
are challenging to emulate in AI.

Moreover, the brain’s biological and physical properties, embodiment, and environmental in-
teraction heavily influence the representations and computations in the human brain. This
adds layers of complexity beyond the high-dimensional latent spaces typically employed in AI.
Thus, while there are parallels and shared insights between human cognition and AI models
like latent-space arithmetic, it’s crucial to acknowledge the unique attributes of human cog-
nition and the ongoing challenges in thoroughly understanding and replicating it. There is
much to learn about the intricate workings of the human mind, and while I’m not a specialist,
I believe that the concept of computations in a high-dimensional space is a key feature of
intelligence that could be used to comprehend complex systems, including biological ones.

In this context, Vector Databases serve as essential tools for handling high-dimensional
data, particularly in AI and machine learning applications where complex operations on this
data are performed. They store, index, and enable efficient querying of large amounts of high-
dimensional vectors, often derived from raw data through encoding or embedding processes
made with deep neural networks. They operate by implementing algorithms that enable effi-
cient search operations within this high-dimensional space, to enable quick similarity searches
or other complex operations. In the same way that latent space arithmetics allow abstract
operations to make sense, vector databases allow to cluster together similar piece of data, al-
lowing to deal with complex amounts of data: In a database composed of images, the nearest
neighbor images of an image of a cat on a sofa will most probably be other images of cats on
a sofa. We will see later very useful practical application of this abstract idea on fluorescent
images of cells.

Multimodality and Latent space arithmetics

Multimodality has been an impressive and surprinsingly simple-to-implement breakthrough
achieved by AI. One can incorporate Images, Text, and even Sound, and obtain high-dimensional
latent state representations where computational operations make sense, allowing for the
emergence of models capable of dealing with multiple modalities, such as text-to-images,
images-to-text, text-to-speech or speech-to-images models [22–25].

Figure 1.8: Speech + text + images to text architecture: Neural network architectures can deal with
multimodality easily: A different input network for each modality allow to blend informations from
sound, text and images. From [26].

Biology operates on a multiscale and multimodal basis, necessitating a deep in-
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tegration and understanding of various forms of data. AI models could make sense of
mechanical, visual, morphological, genetic, transcriptomic, temporal, and contextual data, to
discover patterns and relationships on biological systems, solving mysteries that would have
remained forever out of reach for humans with traditional methods. Despite the difficulty
to interpret their results, AI capabilities constitutes a promising avenue The predictive and
generative functions of such models could form the cornerstone of novel therapies. By facili-
tating an unprecedented understanding of biological phenomena, they could open the door to
innovative treatments that target the root causes of diseases rather than just the symptoms,
driving forward the frontier of personalized medicine.7

7By the time I wrote my thesis Google just released Med-Palm M [27] a multimodal version of their large
language model for healthcare Med-PaLM [28]. The writing was on the wall.



1.4. TAMING COMPLEXITY IN BIOLOGY 35

1.4 Taming complexity in biology

1.4.1 The future of data-gathering and data-analysis

As in many other fields, biology is witnessing and will continue to witness huge developments
because of AI. The newest large models allows us to design algorithms that would never be
possible to realize otherwise. Biology research, as many other intellectual productions that we
believe are reserved to humans because they requires intelligence, is a data-processing tasks:
it fundamentally consists in data gathering and data analysis, i.e creation of models from
experiments.

People keep saying that we are overwhelmed by a deluge of data. I would qualify this state-
ment by saying that we are overwhelmed by a deluge of inexploitable data, and the deluge
of data is overwhelming only because it is inexploitable. We need more data that is easy to
analyze, and it appears that it is quite hard to do so, for reasons that are specific to each
particular problem. But here is a general principle: It is useless to produce data that cannot
be analyzed, and it is useless to design analysis pipelines for data that cannot be produced.
As a consequence, data gathering and analysis are two operations that are becoming more
and more intertwined in recent years: Algorithms are able to do very high throughput data-
analysis if and only if the data respect some rules. People that are being able to control
both acquisition and treatment of data in a vertically integrated manner8, or a very tight and
efficient collaboration, really have an edge over projects where the data is analyzed by people
who had nothing to do with their production.

Since a few years, inventing new data-analysis methods have been very valuable, and the bulk
of the work that I present in this thesis consists of finding clever methods to analyze 2D and
3D microscopy images. A new very recent information is that AI will solve many aspects of
data analysis very soon, if the data comes with a stereotypical appeareance. Instead of replac-
ing whole pipelines, AI modules will most probably consistute new parts of it, functionning
on-par with more classical algorithmic methods, allowing new pipelines one could not dream
of before. As an example, in my work, I repeteadly use cellpose [29] as a black-box instance
segmentation AI module, that constitutes only the first step of my pipelines.

For now, the biggest successes in quantitative biology have been done in what we call Omics,
that is data obtained from sequencing, because these are very structured information: DNA,
RNA and proteins can be described as chains of letters, sequenced and analyzed. In this field,
we know what we are looking for, we know how to represent it, we know where to seek it. We
just need to do that as fast and precisely as possible with a minimal cost. In imaging however,
the quantities that we want to measure are not as obvious. We need more efforts to formulate
what we are looking for in a clear mathematical way, but eventually cannot avoid this step.
Because of that, in omics as imaging, the future will lie in high throughput data production,
where biologists will produce massive amounts of data in a standardized manner, that will
then be analyzed almost instantly and shed light on biological questions in a quantitative
manner. Generating this data will require to have a clear idea of how the analysis pipeline
work, and of the kind of insights we could extract from each piece of data before acquiring it.

This standardisation of data is far from easy, and there is going to be two regimes: First,
each question will go through the discovery regime, to test the data-analysis pipeline with a

8I immediatly think of the labs of Prisca Liberali, Andrew Oates and Löıc Royer when writing this, but
there are many others



36 CHAPTER 1. INTRODUCTION: THE BIOPHYSICIST

biological system in an iterative manner, with small batches9. This phase will allow to fine
tune the procedure, the biological question and the data-analysis algorithms. Then the second
phase arrives, where the procedure has to be ”industrialized”. There is often many ways to
proove something in biology, but some can be high-throughput whereas others can be very
hard to analyze. (Of course, a common approach is to use several of them to see if they tell
the same story).

Microfluidics is a very popular way to do experiment in a repeatable fashion, allowing to
obtain large statistics and to do very accurate tasks at the micrometer scale, and is at the
core of the single-cell RNAseq techniques. Both optogenetics and mechanical perturbation
with optical tweezers could also be used to perform high throughput experiments as well if
programmed correctly. These technologies can be seen as a merging between robotics and
microscopy: Motorized stages gave microscopes legs, allowing the microscope to move freely
accross a very large field of view. The optical tools gives the microscope arms, allowing it to
perturb and manipulate samples at will. Computer vision and more generally AI constitutes
the final element of this stack: they are giving microscopes a brain, allowing it to analyze
data, plan and perform complex tasks on live.

This high throughput approach is really needed to make better biology, to have a better
vision of the whole span of phenotypes one could observe, and to allow new phenomenas to
be understood where, as I said before, the interesting signal is currently impossible to obtain
because of the noise of the biological experiments.

1.4.2 The problem AI solved in quantitative biology: Image segmentation

Image segmentation is a fundamental process in computer vision that enables the division
of an image into multiple segments, or ’regions’, with each region corresponding to different
objects in the image. It forms the backbone of many modern systems, spanning from au-
tonomous driving to medical imaging. However, when applied to biology, the typical image
segmentation techniques often fall short. Biological images present unique challenges, such
as varied cell shapes and sizes, intricate structures, and diverse imaging conditions, and most
importantly volumetric (3D) data, requiring new segmentation methods.

Figure 1.9: Automatic instance segmentation with deep-learning [31].

As in other image analysis tasks, deep-learning proved to be a game-changer. Most archi-
tectures today are modifications of a U-net [32], that revolutionized the field. The model’s

9The ”Law of Small Batches” is a concept derived from lean management principles, particularly as applied
to manufacturing and software development. The idea is to work on smaller batches of work, rather than
large ones, to improve flow, reduce waste, and increase productivity. This is predicated on the principle that
large batches can lead to bottlenecks in processes and longer lead times, as well as increased risk of waste
due to defects or changes in demand. In contrast, smaller batches allow for quicker feedback and more rapid
adjustments, leading to improved efficiency and quality. [30]
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architecture consists of an encoder that captures the context of the image and a symmetric
decoder for precise localization. With clever data augmentation techniques to leverage the
available annotated samples, the network gives surprinsingly good results on segmentation
tasks, even when trained on a limited number of images.

Figure 1.10: The U-net autoencoder structure has become the standard in bioimage analysis. From
[32].

Other AI models soon followed. Stardist, developed to detect cell nuclei, introduces an in-
ductive biais by inferring the geometry of star-convex polygons to localize instances in 2D
images, overcoming issues related to crowding and false merging of cells [33]. Generalists
models, trained on a wide array of data, such as Cellpose [31] also became available, avoiding
the need of model retraining or parameter adjustments. Similarly, generalizations such as
Omnipose [34] were developped for specific use cases, such as segmenting bacterial of elon-
gated or branched morphology.

To tackle volumetric data, Unet has been generalized to 3DUnet [35,36], maintaining its pri-
mary architecture while replacing all 2D operations with their 3D counterparts for volumetric
segmentation. Similarly, Stardist was extended to 3D volumes [37], replacing polygons with
star-convex polyhedra to represent cell nuclei, and Cellpose [31] can use its 2D backbone in
the XY/YZ/XZ axis to be generalized to 3D instance segmentation. Image segmentation was
a very hard problem that has been solved by deep-learning, allowing researchers to devise new
methologies leveraging such automatic data-analysis.

1.4.3 Kitchen recipe and algorithms: the marginal cost of intelligence

I will end up with a very important principle when dealing with complex systems, that is the
marginal cost of intelligence.

My teacher in computer science used to tell us that a good example of an algorithm is a
kitchen recipe. Lets evaluate that at the light of the marginal cost, which is the cost of pro-
ducing one more unit of service. If you want to reproduce a kitchen recipe, even though the
recipe is written and all the ingredients are already there, it will require you some time and
effort to reproduce the recipe. The marginal cost is not zero. However, if you want to apply
an algorithm on some piece of data that you have, you will need almost no time to do that:
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The marginal cost of intelligence is close to zero with algorithms.

This notion is very important: reducing marginal costs is what allow you to make progresses,
by letting people put time and effort on new things instead of repeating all the time the same
tasks. Over time, humanity has progressed a lot in this domain, reducing the marginal costs
of one tasks after another, allowing itself to operate at a higher and higher level, freeing itself
from the slavery of the nature.

If we stay in the fields of thought, we can notice a lot of differences between mathematics
and philosophy. We have to say that when we compare ancien Grece and today universities,
the quality leap of the philosophy produced does not seem huge10, contrary to the evolution
witnessed in mathematics. Why so ? Marginal costs. Once a theorem is proved, it is proved
forever, and we can directly use it and build over it, focusing your efforts on other things.
In philosophy, the ambiguity of the terms means that everybody always end up rediscussing
everything, resulting in a stagnation across time. (Or maybe I am wrong and this is the point
of philosophy, discussing endelessly without following any clear goals...).

At the light of this, we can assess the depth of the change brought by AI: today, the marginal
cost of intelligence is decreasing incredibly fast, and may be close to zero sooner than we
think. It is in this vein that I want to insert my advances: briging the marginal cost of my
work down to zero: I have solved problems once and for all, and I want everybody to use my
tools without having to solve them again, and rebuild what I built. You specify an input, and
it returns you an output, in near-zero time (this near-zero can be up to several days as we
are going to see).

Throughout my thesis, I made it a priority to provide freely available Python implementa-
tions for all the algorithms I proposed. Now, if someone wants to mesh a 2D contour or a 3D
surface, and infer forces on it, they can do so without having to navigate all the complexities
of the process. If someone wants to measure flow, they don’t need to become proficient in
optimal transport; they simply need to ensure that their system meets the required assump-
tions. Finally, if someone wants to create artificial images or engage in differentiable rendering
of microscopy images, they can use my highly optimized GPU implementation directly. All
of these new operations can be readily applied in various use cases.

1.4.4 What about top-down approaches ?

A thinker that is sincere enough will himself recognize a good demonstration when he sees one,
no matter its form. There is no silver bullet. I praised a lot bottom-up approaches because
this was a really logical and conservative way to proceed. What about top-down approaches
in this description ? Are they as valuable as bottom-up approaches ? Where do their value
come from ?

In statistical physics, renormalization group theory gives some answers to this question. A lot
of microscopic systems can be coarse-grained into the same macroscopic description, called
a universality class, and will be undistinguishable from one another if we do not probe the
system with a sufficiently high resolution. Thus we formally cannot deduce the microscopic
nature of the system by looking at it at a larger scale. Top-down is not the inverse of bottom-
up, bottom-up approaches are more powerful.

10I even prefer the old one.
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However, in practise, the physicist will often go back and forth between these two approaches,
by what I call retrospective top-down: Looking at the top system (i.e at the universality class),
one can constrain the microscopic system, as it has to be compatible with the macroscopic
observations. This microscopic system can then be used to do predictions of the quantities at
a larger scale.

A paper that I will briefly cite later explain this approach very well [38]: ”Finally, our top-
down approach could help advance our understanding of locomotion at the molecular level,
as it provides strong constraints for bottom-up models that connect microscopic rules to the
system-level dynamics of cells”.

The principal pitfall of biophysics is what I would call ”the illustrative model”. The model
take a lot of parameters and kind of reproduces what you observed experimentally. And that’s
it, you do not get any value from it, because in fact you are not very sure this is how the
thing works. I believe that one of the reasons such illustrative models exists is because we are
studying systems that are too complicated to model. Top-down approaches can be tempting,
but it is sometimes hard to extract any valuable insights about the microscopic nature of the
system. I will thus prefer to them an fundamentally reductionnist approach that can answer
to a lot of questions: To study simple systems, and complexify the system little by little.
In the following section, in will explain how this applies in my ”wide” domain, which is the
mechanics of morphogenesis.

1.4.5 Doublet Biology

Cell biology has been a cornerstone of biological research for many decades. It began in
fact with the discovery of the existence of cells: early scientists used microscopes to observe
the microscopic structures within living organisms. As our understanding of cells and their
components has grown, so too has our ability to dissect the complex processes that govern
life. This reductionist, bottom-up approach has enabled us to gain valuable insights into the
fundamental workings of biological systems, laying the foundation for advances in medicine,
genetics, and countless other fields.

However, as the field advanced, researchers recognized that studying single-cell was not the
end of the story: Cells interact with one another, and forms complex networks and multicel-
lular organisms. To gain a deeper understanding of living structures, it is important to study
them as a system, and not only component by component. Today, systems biology is one
of the most fancy topics in biology. I am astonished by the diversity and the complexity of
the systems studied by the researchers, and the unique data that people have access to. The
problem, however, is that life is a mess. If you want to study an intricate system because you
find it sexy to embrace complexity, you will find one without any difficulty. I firmly believe
that too many people study systems that are way too complex. This leads to data that is
very difficult to analyze, and it is hard to see what insights we can get from them. I would
have loved to collaborate with biologists who did things with ≈ 10s of cells, but they were
surprinsingly hard to find11.

This disagrement between the data produced and the analysis and modeling tools made me
understand that we needed to study simpler systems, and focus on the simplest
system one can think of beyond a single cell: two cells. By examining how two cells

11Save for our friends Rémi Dumollard and Alex McDougall from the marine station of Villefranche-sur-Mer
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interact, we can dissect fundamental processes such as adhesion, mechanochemical feedback
loops, and the principles governing multicellular communication. This approach has the po-
tential to shed light on many biological questions that would be difficult to address in more
complex systems. I thus want to propose the formal establishment of a new approach called
”Doublet Biology”. In this approach, we would push the reductionism as far as possible, fo-
cusing on simplified, controlled systems, that we can easily dissect and make reproducible.
This simplified setting could facilitate the development of predictive models and quantitative
understanding of cellular interactions, which could then be extrapolated to more complex
systems.

In the following sections, I will delve deeper into existing studies that lay the groundwork for
this more integrative form of cell biology. This emergent subfield is currently underexplored
and holds immense promise. However, it is essential to recognize that just as biology can-
not be entirely encapsulated within cell biology, binary interactions will not fully encompass
biological complexities. As such, the evolution of cell biology will undoubtedly involve the
incorporation of more integrated approaches, such as the inclusion of extracellular matrix,
and more complex multicellular systems. Doublet biology12 is just the next step, not the final
destination.

1.4.6 Sparks of Doublet Biology

I will cite some works in this line of thought. There are some remarkable studies have em-
ployed similar methodological approaches that I will not have time to delve into [39–41]
Retrospectively, the biggest regreat of my PhD is to have studied systems that are a little
bit too complex. Reflecting on my experience, I will take some time to highlight the value of
studying biological systems.

The examples that I will cite use doublets to investigate adhesion, cell displacement and
interaction, and migration. Let me make explicit the methodology that I like:

• They start studying a doublet, which is the minimal system expressing the emergent
behaviour that interests them.

• They do quantitative models, that allow them to have a quantitative understanding
of the phenomena at play, as well as more abstract ”high level” insights about the
behaviour of the system.

• They observe a complex system, often in-vivo, to see how the principles studied in the
doublet can be generalized in a more complex system.

Mechanical dissection of cortical adhesion

The first study [42] addresses the mechanisms involved in cell sorting during gastrulation in
zebrafish, specifically focusing on the roles of cell adhesion and cortex tension. The authors
started by providing a mechanical model of two progenitor cells in contact, where the size of
cell-cell contact is determined by the balance of forces at the contact boundary:

cos θ = 2γcc − ω

2γcm
(1.2)

12I know, Doublet biology does not sound very sexy. Should call it Cell Biology 2.0 to make it attractive ?
I fear so...
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Figure 1.11: Doublets follow a simple model, where tension and adhesion intervenes in the determi-
nation of cell shape. Three cell types, ectoderm, mesoderm and endoderm, are present in the embryo
allow to study different conditions. From [42].

where θ is the contact angle of the two adhering cells, γcm the tension at the cell-medium in-
terface, γcc the cortex tension at the contact, and ω the negative contribution due to adhesion.

Traditionally, it is believed that adhesion increases the contact size, while cortex tension re-
duces it. The research team then used an innovative approach to examine the mechanical
parameters controlling progenitor cell-cell contact formation. By measuring the contact an-
gle of freely adhering cell doublets and examining the ratio of the interfacial tensions at the
cell-cell and cell-medium interfaces, they uncovered that ectoderm doublets displayed a larger
contact angle and a lower ratio of cell-cell to cell-medium interfacial tensions compared to
mesoderm and endoderm doublets.

Upon measuring the cortex tension at the cell-cell and cell-medium interfaces, the study con-
firmed that cortex tension at these interfaces controls the cell-cell contact angle and, thus,
the contact size. Interestingly, they found that the magnitude of adhesion tension ω was
considerably smaller than the cortex tension at the cell-cell interface, contrary to previous
suggestions. Although adhesion tension seems to have a limited role in cell-cell contact ex-
pansion, the formation of adhesive bonds remains essential. These bonds allow mechanical
coupling of the contractile cortices of the adhering cells at the contact, supporting stresses
normal to the adhesion zone. E-cadherin adhesion thus acts as a mechanical scaffold enabling
cortex tension to control contact expansion.

Figure 1.12: Cadherins are assential to provide cell adhesion. From [42].

To better understand the function of mechanical coupling due to adhesion, the researchers
measured, on ecto/meso/endoderm the separation force and the fluorescence intensity at the
contact. They found that ectoderm doublets exhibited higher separation force at varying
contact times compared to mesoderm and endoderm doublets, suggesting that cytoskeletal
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anchoring of cadherins is a critical factor determining the difference in separation force and
cell-cell contact size between the progenitor cell types. Eventually, they made the interesting
finding that the cytoskeletal anchoring of cadherin led to the formation of membrane teth-
ers at the separation between two cells. These tethers can be interpreted as a signature of
cadherin-mediated cytoskeletal anchoring.

Figure 1.13: Membrane tethers forms at separation, both ex-vivo and in-vivo. From [42].

After this ex-vivo study on doublets, the authors look at the actual in vivo situation during
zebrafish gastrulation, observe the same behaviours, and thus postulate that progenitor cell-
sorting is driven by the contact-formation mechanisms that they observed on the doublet, and
can make interesting postulates about the causality relationships between cortex tension and
anchoring strength of the mechanosensitive adhesion complexes.

Dynamics of confined cell interactions, one cell at a time.

I will briefly discuss two studies that describes a series of experiments and theoretical models
that together elucidate the dynamics of cell migration in a confined space, with a focus on
disentangling the stochastic and deterministic elements of cell behavior. The first study is
focused on what happens on a single cell [38]. Then the authors wanted to integrate this
knowledge and started studying interactions between cells, and made the great decision to
study it with only two cells [43].

The first paper [38], focuses on understanding the dynamics of individual cell migration when
they are confined in a structured environment. For this purpose, the researchers designed
a two-state micropattern system, consisting of two adhesive sites connected by a thin con-
striction. They confined individual cells in this micropattern, and monitored their movements.

The researchers collected a large set of data containing trajectories of individual cells (both

Figure 1.14: Integrating the knowledge at a system level can be done with only two cells to start
with. From [38,43].
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Figure 1.15: The two cell lines studied lie on a larger phase spaces, where maybe other cell types
could be mapped. From [43].

cancerous MDA-MB-231 and non-cancerous MCF10A cells). These trajectories highlighted
that the cells perform repeated stochastic transitions between the two adhesive sites, driven
into the thin constriction. The authors fitted the position data to deduce a simple differential
equation, composed of a deterministic term F (x, v) and of a stochastic term σ(x, v):

dv

dt
= F (x, v) + σ(x, v)η(t), where η represents a white gaussian noise. (1.3)

This equation demonstrated that confined cell migration can be accurately captured by a
relatively simple second-order Langevin equation, including a two-dimensional nonlinear de-
terministic term and a state-dependent noise term. Interestingly, the two cell lines exhibited
distinct deterministic dynamics: the MDA-MB-231 (cancerous) cells displayed a limit cycle
(a repetitive path in phase space), whereas the MCF10A cells displayed bistable dynamics
(two stable states).

Building upon their earlier work, the authors extended their investigation to include the
dynamics of cell-to-cell interactions [43]. They modified their experimental setup into a ”cell
collider,” which allowed two cells to collide and interact in the confined micropattern space.
They adapted the stochastic differential equation to account for cohesive interaction and
friction:

dv

dt
= F (x, v) + f(|∆x|)∆x + γ(∆x)∆v + σ(x, v)η(t) (1.4)

where f(|∆x|)∆x is the cohesive interaction term and γ(|∆x|)∆v is the friction term.

By observing these interactions, they discovered that distinct cell types exhibited diverse inter-
action behaviors: noncancerous MCF10A cells showed behaviors characterized by repulsion
and friction, while the cancerous MDA-MB-231 cells displayed attraction and antifriction
behaviors. These divergent dynamics suggested that different types of cells follow unique
interaction rules during their migratory processes, potentially influenced by their intrinsic
biological state (cancerous vs noncancerous). In fact, these two behaviours are just particular
cases of a larger phase space, that may be explored by other systems

In both papers, the researchers used a data-driven approach to develop a theoretical frame-
work that describes the dynamics of cell migration in confined environments, either in the
context of a single cell or pairs of interacting cells. In the first study, the research focused
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on understanding the dynamics of individual cells, demonstrating the interplay of determin-
istic and stochastic dynamics in driving the cell into the thin constriction. In the second
study, they built upon this foundation to investigate how these dynamics manifest when two
cells interact with each other. This simple system allow to really decipher and understand
the processes at play, contrary to a system containing more cells that would be harder to
interpret.

It takes two to make a collective

Another good example can be provided by a study about collective dynamics in migrating
cells [44]. From the author’s words, ”The Ciona cardiopharyngeal progenitors (heart and throat
precursors) provide the simplest model of collective cell migration”.

Figure 1.16: Left: localization and shape of the cardiopharyngeal progenitors. Right: The cellular
Potts model used to describe the shape of the cell. From [44].

They study the mechanisms of collective cell migration using this simple biological system.
The findings demonstrate that cardiopharyngeal progenitors move in pairs composed of a
leader and of a trailer. Doing so, they maintain supracellular polarity with differing distri-
butions of cell-matrix adhesion, myosin-based retraction forces, and protrusive forces along
the leader-trailer axis (direction of migration). They act in a complementary manner, instead
of reproducing the same pattern, showing a minimal system where an emergent collective
behaviour can be observed.

The Cellular Potts Model (CPM) is used to examine the force distributions that align with
the shapes and collective polarity of migrating cell pairs. This computational model is used
to simulate cellular behaviors and interactions at the collective level, such as cell sorting, cell
migration, and tissue growth. Rather than representing each cell as a single point or sphere,
the CPM represents cells as collections of smaller units or pixels, each with an assigned ”cell
ID”. Cells can change shape and move by changing the cell ID of their pixels and those of
their neighbors based on certain energy minimization principles. In this model, the behavior
of cells is governed by an effective energy function, or ”Hamiltonian”, which takes into account
cell-cell adhesion, cell volume, cell shape, and other biophysical properties. For a pair of cells
of area a1, a2, of volume v1, v2, of target volume v0 and of area with the substrate a10, a20,
and of cell-cell area a12, the Hamiltonian can be expressed as:

H = κ(a2
1 + a2

2) + λ((v1 − v0)2 + (v2 − v0)2) + J10a10 + J20a20 + J12a12 + W(x⃗i) (1.5)

where κ models the surface tension and λ the hydrostatic pressure. J represent the mechan-
ical adhesion, and W describes the protrusive and retractive forces. This Hamiltonian is a
generalization of a simpler Hamiltonian for the single-cell case, and it is easy to see how it
could be generalized to a larger number of cells.
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To have an even simpler system, the authors did an experimental perturbation on one cell, by
inducing a dominant-negative inhibitor of Sar1dn, that stalls the migration of the transfected
cell, leading to only one migrating cell. They use this single cell migration experimental data
to validate the Potts model and to build a phenomelogical model of migration of the Trunk
Ventral Cell (TVC) on the epidermis, before extending the model to the pair observed in the
WT phenotype, with a leader and a trailer cell.

Figure 1.17: Left: Phenomelogical model of cell migration. Right: Experimental validation of the
cellular Potts model. From [44].

In order to assess what determines which cell becomes the leader and the trailer, they do
pharmacological perturbations. They deduce interesting and significant statistical patterns
that are out of the scope of this section, but informs about the cellular pathways involved
in the leader-trailer mode of migration. Following the line of thought of integration via pro-
gressive complexification, the authors extend their system to the 3-cell case, showing that
they naturally adopt the leader-trailer mode of migration. They also manages to perturb
their system to obtain four TVC instead of two, and observe that they migrate following the
leader-trailer mode of migration.

Figure 1.18: Extension with 3 cells, perturbation in vivo to see with 4 cells. From [44].

Eventually, after having looked at the interaction of the doublet with the endorderm, the
authors propose that the persistent and directional migration of cell pairs might be due to the
emergent physical properties resulting from the polarized supracellular organization of these
progenitors. They suggest that these properties could be crucial for the cells to overcome the
mechanical resistance of their surrounding environment during their migration. They also
highlight the need for balance between cell-cell and cell-matrix adhesion in maintaining the
collective polarity and integrity of the migrating cell pairs. Furthermore, they suggest that
cell-cell communication is critical for aligning collective polarity with the direction of migra-
tion, as observed in simulations and in vivo observations.

The study concludes that supracellular organization may influence the directionality and
mechanical interactions of migrating cells with their environment, facilitating more efficient
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migration over longer distances. Methodologically, their way to proceed is very logical and
progressive: they study what happens in a single cell, see to what extent this generalizes to a
doublet, and what emergent properties could appear in this more complex system.

Figure 1.19: Emergent behaviour of the two cells. From [44].

1.4.7 Beyond reductionism - Biology by the numbers

Aside from reductionism, the thermodynamics-like approach of measuring macroscopic prop-
erties and study the system through their lens can offer many insights. Determining which
macroscopic quantities to measure is hard however, and I think that the most interesting
quantities may be backed with some physical theories, mostly from solid and fluid mechanics
(viscosity, elasticity, stresses) or statistical mechanics (cell-cell contacts, cell shapes, topo-
logical charges [45, 46]...). Measurings such quantities allow to proceed to a whole kind of
mathematical operations between them, allowing to formulate predictions, among which:

• Order relation: If a < b and b < c, then a < c. In case of 1D data, measuring
mathematical quantities allow to track the temporal evolution of a quantity, and make
a lot of observations, assertions and predictions about them.

• Distances: In case of data of higher dimensions, one can study the topology of the
space, looking about the relative distance between each other, which allow to quantify
similarity and dissimilarity. It can also be relevant to study the different modes of vari-
ation of the data.

• Symmetries: One can also look at invariances in the patterns, and at conserved
quantities, as they can be very informative about the nature of the system. (speak
about noether theorem).

However, such measurements can be far more abstract that just physical quantities. As an
example, it is possible to extract value from transcriptomics or imaging data (by using self-
supervised learning to create informative embeddings) using the same methodology.

1.4.8 Early successes of quantitative biology in high dimensions

Single-cell RNAseq

Single-cell RNA sequencing (RNAseq) is a revolutionary technique that was developed as a
response to the limitations of bulk RNA sequencing, which could only provide an average
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gene expression profile of a multitude of cells, thus obscuring the nuances and heterogeneities
within individual cells. Single-cell RNAseq emerged as a solution, enabling researchers to
decode the transcriptome—the complete set of RNA transcripts produced by the genome—of
individual cells, thereby providing insights into the unique functional characteristics of each
cell and shedding light on complex biological processes and diseases. A key enabler of this
transformative technology is the application of microfluidics, manipulation and
control of fluids at the microscopic level. Circuits are designed to isolate individual cells
and execute single-molecule barcoding, a technique crucial for identifying and distinguishing
the transcripts of each individual cell.

Figure 1.20: Microfluidics barcoding allow to trace the host cell of each RNA fragment after cell lysis
and transcription, allowing RNA-sequencing at the single-cell resolution. From [47].

To visualize and analyze the high-dimensional data produced by single-cell RNAseq in a more
comprehensible manner, both dimensionality reduction and clustering algorithms are
vital. Dimensionality reduction algorithms such as t-SNE [48] or UMAP [49] have become
particularly valuable in this field, as well as clustering algorithms such as k-nearest neigh-
bors [50, 51]. t-SNE and UMAP work by reducing high-dimensional data into two or three
dimensions, while preserving the distances between data points.

Figure 1.21: UMAP of an artificial ”embryoid” created from stem-cell cultures. Different cell types
appears in clusters of different colors. From [52].

Single-cell RNAseq embodies a top-down approach, starting with a complex, high-dimensional
model that is then distilled into simpler, more interpretable conclusions. This surprising ease
of interpretation, one of the great advantages of single-cell RNAseq, facilitates a seamless
oscillation between microscopic details and more coarse-grained, system-level, mesoscopic
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properties. It is currently at the basis of new studies shedding a new light on old problems,
allowing an unprecedented understanding of cellular behaviors and dynamics at both the
individual cell level and the broader system level.

Self-supervised methods in biology

As said before, methods leveraging artificial intelligence and machine learning have been
increasingly employed to streamline and automate various analysis processes. However, espe-
cially in biology, the generation of annotated training data is challenging or resource-intensive.

Figure 1.22: The self-supervised approach works by learning a pretext task, in this case to predict
protein distribution and identity. From [53].

When looking at other fields of information processing, a prominent methodology is self-
supervised learning, which allow neural networks to learn without the need of annotated
data [54–58]. Self-supervised learning works by pretraining the neural network on
a pretext task, that can be formulated based solely on unlabeled data (such as
completing holes in a text), allowing the filters of the neural network to generate embeddings,
i.e high dimensional representation of our input data, that capture high-level image seman-
tics. These representations can then be fine-tuned or used directly for a downstream task
with available ground truth. This method can be particularly impactful in fields like live-cell
microscopy where data annotation can often be laborious, and it becomes crucial to discern
meaningful representations of microscopic images.

Cytoself uses self-supervised learning for protein localization profiling and clustering, enhanc-
ing the understanding of cellular architecture and the diversity of protein localization. The
model comprises two pretext tasks for individual cropped images: the first task encodes
and decodes the image, extracting lower-dimensional representations, while the second task
predicts the protein identity associated with the image from these representations, assum-
ing protein localization is correlated to protein identity. The output of interest here is the
’localization encodings,’ or distilled image representations, not the reconstructed image or
predicted protein identity. These embeddings can be used to construct a vector database of
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Figure 1.23: The Umap algorithm allows to visualize proteins clustered according to their localization.
From [53].

protein expression within a cell, where collocalized proteins appear close to each other. It will
help better understand the role of some understudied proteins, by helping to make functional
predictions.

Figure 1.24: TAP architecture: A permutation-equivariant time arrow prediction neural network
extracts features from biological images in order to predict the order of the frames in an image sequence.
These representations are then used to learn downstream tasks. From [59].

Another interesting self-supervised learning approach in live-cell microscopy is explored with
the TAP architecture [59]. This study takes advantage of the fact that biology is an out-
of-equilibrium process where irreversible events, such as cell-divisions, differentiation, apop-
tosis or morphogenetic movements happens. These events are informative of time-reversal-
invariance symmetry breaking, and can thus be used to pretrain a neural network to learn
dense image representations from raw, unlabeled live-cell microscopy videos. The pretext task
is predicting the correct order of time-flipped image regions via a single-image feature extrac-
tor and a subsequent time arrow prediction head. As expected, these dense representations
capture inherently time-asymmetric biological processes such as cell divisions on a pixel-level.
The generated representations could then be used to perform detection, segmentation or cell
state classification tasks, giving good performance even when only limited ground truth an-
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notations were available.

Figure 1.25: TAP returns embeddings that capture time-assymetric biological events. From [59].

Self-supervised methods holds a significant promise in deep-learning, by reducing the need of
labeled data, paving the way for more efficient automated biological data analysis.
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[35] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ron-
neberger. 3d u-net: learning dense volumetric segmentation from sparse annotation. In
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th In-
ternational Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19,
pages 424–432. Springer, 2016.

[36] Huimin Huang, Lanfen Lin, Ruofeng Tong, Hongjie Hu, Qiaowei Zhang, Yutaro Iwamoto,
Xianhua Han, Yen-Wei Chen, and Jian Wu. Unet 3+: A full-scale connected unet for
medical image segmentation. In ICASSP 2020-2020 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 1055–1059. IEEE, 2020.

[37] Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and Gene Myers. Star-
convex polyhedra for 3d object detection and segmentation in microscopy. In Proceedings
of the IEEE/CVF winter conference on applications of computer vision, pages 3666–3673,
2020.

[38] David B Brückner, Alexandra Fink, Christoph Schreiber, Peter JF Röttgermann,
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wayama, François Nédélec, and Takashi Hiiragi. Asymmetric division of contractile do-
mains couples cell positioning and fate specification. Nature, 536(7616):344–348, 2016.
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Chapter 2

Cells and bubbles

In this chapter, we describe in greater details cell biology, the mechanics of
acto-myosin cortex and its emerging properties. We explain current experimen-
tal techniques to measure cellular stresses and forces, before discussing succin-
tely rigidity transitions in tissues. We draw an analogy with between tissues and
foams, and introduce vertex models and the isoperimetric problem in 2D and 3D.
We introduce the toy model of the cell-doublet, that we explore in depth, both
analytically and numerically. Then we build a minimalistic implementation of
gradient descent for shape optimization, that we progressively improve. Finally,
we introduce our current implementation, discussing data structures for repre-
senting 3D geometries, topology transition solutions, and optimal mesh qualities.

Dans ce chapitre, nous décrivons plus en détail la biologie cellulaire, la mécanique
du cortex d’actomyosine et ses propriétés émergentes. Nous expliquons les tech-
niques expérimentales actuelles pour mesurer les contraintes et les forces cellu-
laires, avant de discuter succinctement des transitions de rigidité dans les tissus.
Nous établissons une analogie entre les tissus et les mousses, et introduisons les
modèles de vertex et le problème isopérimétrique en 2D et 3D. Nous présentons
le modèle jouet du doublet cellulaire, que nous explorons en profondeur, à la fois
analytiquement et numériquement. Ensuite, nous construisons une mise en œu-
vre minimaliste de la descente de gradient pour l’optimisation de forme, que nous
améliorons progressivement. Enfin, nous introduisons implémentation réelle, en
discutant des structures de données pour représenter les géométries 3D, des so-
lutions de transition topologique, et des caractéristiques de maillage optimales.
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2.1 Cell and tissue Mechanics

As the building blocks of all livings organisms, cells exhibit an array of intricate and dynamic
mechanical behaviors that underpin life’s diversity and complexity. Cell morphogenesis, that
aims at understanding what determines their shape is a very rich and interdisciplinary field
of study that bridges biology, physics and mechanics to elucidate how physical forces and
mechanical properties govern a cell’s behavior, morphology, and function. The architecture
and dynamics of cells are regulated by a complex interplay of biological structures, that we
will define and describe in the following section.

2.1.1 Mechanical aspects of the elementary components of a cell

Membranes: Lipid bilayers

Figure 2.1: Diagram of the membrane system of an eukaryotic cell. From [1].

Cells membranes are composed of lipid bilayers, much like soap bubbles. They are composed
of amphiphilic lipids: one end of a lipid molecule is attracted to water (hydrophilic) while the
other end is repelled by it (hydrophobic) [2,3]. This fundamental property of the lipids results
in a spontaneous formation of bilayers in aqueous environments, similar to the behavior of
soap bubbles in air. These self-assembled structures display characteristic behavior such as
area minimization, while being able to exhibit surprinsingly diverse geometries depending on
their surrounding environment.

A closer look into the cellular structure reveals that lipid bilayers not only demarcate the
outer boundary of cells but also form the encapsulating structures of nuclei, organelles, and
vesicles. The cell’s architectural complexity is allowed by the versatility of lipid bilayers,
allowing compartmentalization of various biological functions within a single cell. Vesicles are
responsible for the transport of proteins and other macromolecules between different cellular
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Figure 2.2: Bilayers are a stable self-organized configuration of amphiphilic lipids. From [1].

compartments. This process, also known as intracellular trafficking, is vital for maintaining
cellular homeostasis and enabling responsive adaptation to environmental changes [4].

Cytoplasm

The cytoplasm is the internal medium of cells. It is often described as acting like an in-
compressible viscous fluid, serving as the cellular environment in which organelles reside and
chemical reactions happens. It would be misleading to perceive the cytoplasm as an empty
fluid where some interesting things happens from time to time; in reality, it is a crowded and
dynamic environment. Within the viscous milieu of the cytoplasm are numerous organelles,
each carrying out their unique functions. These encompass the nucleus, mitochondria, en-
doplasmic reticulum, Golgi apparatus, and lysosomes, among others. Intriguingly, the cy-
toplasm also hosts membraneless organelles, which lack a surrounding lipid bilayer. These
unique structures have crucial roles in diverse cellular processes, including mechanics.

The nucleus

The nucleus is the largest organelle within the cell, and plays a central role in multiple cellular
processes. As a repository of genetic information and the site of DNA transcription, it serves
as a fundamental control center, orchestrating various aspects of cellular function.

Figure 2.3: Diagram of a eukaryotic cell nucleus. From [1].

In addition to its conventional biological roles linked to transcription and regulation, the
nucleus also acts as a mechanical sensor. This feature enables it to trigger specific cellular
responses to mechanical stimuli, such as ameboid displacement. Ameboid movement is a
rapid and adaptable form of cell motility observed in many cell types, particularly those
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of the immune system, which is often stimulated in response to physical alterations in the
cellular environment. In the nuclei, the cell membrane is naturally wrinkled. When the nuclei
is compressed, these wrinkles disappear, leading to the activation of the cPLA2-AA pathway,
that recruits myosin II to the cell cortex, raising contractility and leading to ameoboid cell
migration [5, 6].

Figure 2.4: Diagram of a nuclear mechanosensation mechanism. From [6].

Furthermore, the nucleus can have a direct mechanical impact on cell shape, particularly
under conditions of significant cellular deformation. In this case, the nucleus experiences
compression, which subsequently influences the overall cell shape. However, the fact that the
nucleus compression activates a migration pathways means that having a stable tissues may
incompatible with having compressed nuclei. As a consequence, in steady tissues, nuclei are
most often not compressed, and thus they do not play a mechanical role. 1

Polymers and Entropic Springs

The cytoplasm hosts a myriad of macromolecules, including DNA, RNA, and proteins, that
are formed in a sequential manner, element by element, ultimately giving rise to polymers.
These polymers then fold upon themselves to acquire their unique and intricate shapes that
is necessary to excert their function. Interestingly, these polymers can behave akin to what
is known as ’entropic springs’. An entropic spring is a system where the force arises not
from a change in energy but from a shift in entropy. When polymers are confined within
a restricted space, as they are in the cell, they naturally adopt coiled configurations. This
coiling increases the randomness, or entropy, of the system, thereby maximizing it [7–9]. Any
external force f [10] that attempts to extend or unfold the polymer is met with a restoring
force, in a response similar to the one of a mechanical spring. This entropic spring behavior
can play a significant role in several cellular functions.

Figure 2.5: Perfect polymer are entropic springs. From [10].
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Figure 2.6: Cytoskeleton of a cell (Red: actin, Green: microtubules, Blue: nuclei)

Cytoskeleton

The cytoskeleton, as the name implies, is a skeletal network that extends throughout a cell,
from the cell nucleus to the cell membrane. This network gives the cell its shape, provides
mechanical resistance to deformation, and assists in numerous cellular functions such as di-
vision, polarization, apoptosis, intracellular transport and cell migration. In eukaryotic cells,
the cytoskeleton is composed of three main types of filaments: microfilaments, intermediate
filaments, and microtubules.

• Actin Filaments: Often referred to as microfilaments, these are the thinnest filaments in
the cytoskeleton, with a diameter of around 7 nm [11]. Composed primarily of a protein
named actin, these filaments are flexible and resistant to buckling, playing a pivotal role
in muscle contraction, cell division, and cell motility.

• Intermediate Filaments: As their name suggests, these filaments are intermediate in
size, typically 10 nm in diameter. They consist of a diverse group of proteins, including
keratins, vimentin, and neurofilaments. These structures provide mechanical strength
to cells and tissues, helping them withstand physical stress.

• Microtubules: These are the largest filaments, with a diameter of about 25 nm [12].
Built from tubulin proteins, microtubules are stiff hollow tubes that serve as tracks
for the transport of organelles and vesicles within the cell. They also form the spindle
apparatus during cell division.

These different types of filaments do not exist in isolation but interact and are regulated
through a plethora of accessory proteins. These proteins modulate the assembly of filaments,
link them to other cellular structures, or facilitate their interaction with motor proteins for
movement along these filaments.

Figure 2.7: Structure of some filaments composing the cell cytoskeleton. From [13].

1Please read that with attention, this is important.
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The turnover rate of these cytoskeletal elements, the process of continuous assembly and dis-
assembly, varies significantly. Actin filaments have the fastest turnover, happening within
seconds to minutes, followed by microtubules that take minutes to hours, and finally in-
termediate filaments with a turnover time ranging from hours to days. These timescales are
approximate and subject to variation. For instance, different cell types, developmental stages,
and cellular conditions (e.g. cell division) can all influence the dynamics of these cytoskeletal
elements.

Element Diameter Persistence length Turnover timescales
Actin filaments 7nm 17µm seconds - minutes

Intermediate filaments ≈ 10nm < 1µm ≈ hours - days
Microtubules 23nm 1-5mm minutes - hours

The intricate composition, dynamic nature, and complex regulation of the cytoskeleton makes
it a cornerstone of cell mechanics. Historically, the study of the behavior or intermediate
filaments has been a bit neglected by researchers, constitute today a very active field of
research.

2.1.2 Emerging properties of the acto-myosin cortex

Actin filaments

Actin is one of the most abundant proteins in eukaryotic cells and plays a central role in de-
termining the shape and mechanics of cells. This versatile protein is crucial for many cellular
functions, including determining cell shape, motility, intracellular trafficking, maintaining cell
junctions, and possesses a rich dynamic behavior and spatial organization.

Figure 2.8: Atomic model of the actin filament. Actin monomers assembles following a double-helix
structure. From [14].

Actin proteins (globular actin or G-actin) assemble into slender structures known as microfila-
ments or actin filaments (F-actin). These filaments have a distinctive double-helical structure,
with each approximately 7 nm in diameter. Composed of two strands of polymerized actin
monomers, each strand runs in the same direction, a characteristic often referred to as filament
polarity. This polarity is essential to many of the functions that actin filaments perform. Actin
filaments are not static entities, and undergo a continuous process known as treadmilling, in
which monomers are added at the positive end (barbed end) of the filament and removed
from the negative end (pointed end). This dynamic nature allows actin filaments to help cells
rapidly respond to changes in their environment.

The actin cortex

At the cell surface, actin filaments interact with myosin motor proteins and a variety of actin-
binding proteins that are crucial to help its nucleation, such as Arp2/3 [15]. The assembly
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of these components forms a structure known as the actomyosin cortex. Because of the rapid
turnover of its constituent proteins and its capacity to form a complex, branching meshwork,
the actin cortex have very dynamic attributes.

Figure 2.9: The complex Arp2/3 plays a crucial role in the formation of the actin network by allowing
the creation of branching filaments.

These filaments work in conjunction with myosin motor proteins, which generate force by
moving along the actin filaments, resulting in contraction and extension of the cortex. The
cortex isn’t a standalone structure, and is connected to the cell membrane through specific
anchoring molecules, creating a stable yet flexible interface between the rigid cytoskeleton
and the fluid-like cell membrane. This interconnection allows the cell to change shape while
maintaining its structural integrity.

Figure 2.10: Model of the Actomyosin cortex. actin polymerizes with a rate kp, and depolymerizes
with a rate kd. From [16].

The actin cortex also houses molecular pathways that regulate myosin recruitment. The
presence of myosin in the cortex is governed by specific signaling events that dictate when
and where myosin is required, ensuring the efficient and controlled generation of force within
the cell. An interesting feature within the context of the actin cortex is the formation of blebs
[17–19]. Blebs are bulbous protrusions of the cell membrane that occur when the cortex is
detached from the membrane. The peculiar behavior of these stuctures devoid of cytoskeleton
highlight the critical role the cortex plays in maintaining cell shape and responding to various
mechanical stresses.
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Acto-myosin cortex as a condensate

In recent years, the concept of membraneless organelles has revolutionized our traditional
understanding of cellular organization. Unlike conventional organelles encased within a mem-
brane, membraneless organelles are distinct, membrane-free structures [20]. Numerous exam-
ples of these unique organelles can be found both in the cytoplasm and nucleus, and they play
crucial roles in a plethora of cellular processes.

Membraneless organelles allow to compartmentalize, and regulate biochemical reactions. They
act as ’chemical reactors’ within the cell, capable of sequestering or concentrating specific
molecules, thereby accelerating chemical reactions and enhancing an efficient use of the cyto-
plasmic volume. By encapsulating different biochemical processes, they facilitate concurrent
yet independent operations within the same cellular space, leading to rapid and targeted re-
sponses to changes in cellular states or external stimuli.

Figure 2.11: Movie of a C-elegans oocyte actin cortex maturation. F-actin, N-WASP and the ARP2/3
complex form an active micro-emulsion that catalyses actin nucleation. From [21].

One specific membraneless organelle of interest, when studying cellular mechanics, is the
condensate related to acto-myosin cortex activation. Within cell membranes, it has been
observed using super-resolution (TIRF) microscopy, that actin is distributed in clusters also
containing other nucleators such as ARP2/3 [21]. These clusters are, apparently, understood
as condensates that play a key role in the acto-myosin cortex activation process.

Corse-grained properties

The complex and dynamic behaviors of cellular components, like actin and myosin, can be
understood through the lens of statistical physics. At the nanoscopic scale, the behavior of
these components is well defined. At an intermediate scale, we have seen that actin forms an
emulsion to catalyse its nucleation. At the larger, mesoscale level, the cortex present differ-
ent emerging properties. Statistical physics provides the tools necessary to understand these
divergences, employing various active hydrodynamic theories, such as active polar gels, and
active nematic gels [16,22,23].

For instance, during cell division, the actin cortex forms a contractile ring that tightens around
the cell’s middle, resulting in the creation of two daughter cells [25, 26]. The cortex’s role in
cell migration is also paramount. By rapidly assembling and disassembling actin filaments
at the cell’s leading edge, the cortex can extend and retract portions of the cell, propelling
it in a particular direction. In the litterature, a widely accepted approximation consist of
studying the mechanical behaviour of the cell only by studying the properties of the actin
cortex. Despite being a simplification, this approximation has proven successful in modeling
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Figure 2.12: Hydrodynamic theories allow to study coarse-grained emerging properties of the acto-
myosin cortex. From [24].

observed cell behavior both in vivo and ex vivo. It serves as a minimal model - if it’s good
enough, there’s no need to add more complexity.

Foam physics, On growth and form

D’Arcy Wentworth Thompson (1860-1948), a pioneer in biology, is famous for his ground-
breaking work On Growth and Form [27] published in 1917, where he explored how physical
and mathematical principles shape biological development, or morphogenesis, heralding the
era of biophysics. One of his most significant contributions was the analogy of describing cells
as a foam-like structure.

Figure 2.13: D’Arcy Thomson was appointed full professor at age 24, so he never got the chance to
do a PhD. Life was easier at these times. He did some good work nevertheless.

Thompson observed that, like individual soap bubbles, cells adopt shapes that minimize their
surface area. In both cases, these forms represent a state of minimal energy. He emphasized
that the spatial organization of cells in a tissue and soap bubbles in a foam share striking
similarities. For instance, the way that three soap bubbles meet along a line at an angle of
approximately 120 degrees was found to mimic the angles at which three cells meet in ep-
ithelial tissues. He further noted that, just as soap foams rearrange to minimize total surface
area when soap bubbles grow or shrink, so too do cells rearrange within a tissue in response
to growth or remodeling.

This analogy was the basis for later studies that further developed this ”cellular foam” model,
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Figure 2.14: Left: Picture from d’Arcy Thomson book. Right: Confocal slice of cells from Drosophila’s
Ommatidia [28].

applying it to the understanding of tissue mechanics and morphogenesis. This assumption
is of course only valid at equilibrium, excluding any dynamical aspects of morphogenesis.
Thompson’s foam analogy continues to provide valuable insights and has paved the way for
more complex modelling approaches of cell-cortex behavior.

Figure 2.15: Dragonfly wing. From [27].

If we relate the foam model to the components of the acto-myosin cortex, which is responsible
for the mechanics of cell membranes, actin filaments and myosin motors play roles analogous
to the molecules at the surface of a bubble. Just as intermolecular forces contribute to
surface tension in a bubble, interactions between actin filaments and myosin motors generate
contractile forces within the actomyosin cortex. The main postulate is that the fine-grained
dynamics of the actomyosin cortex can be averaged in space and time and lead to simple
coarse-grained equilibrium behavior ressembling a foam when considering cells evolving on
long timescales. We will build large parts of our work using this foam physics analogy, but
first we will discuss a bit other crucial properties of tissues.

Cadherins and interactions with the environnement

Within a tissue or an organism, cells are not isolated entities but are in constant dynamic
interaction with their surroundings. These interactions are predominantly mediated through
cell-cell junctions and cell-extracellular matrix (ECM) adhesions, which plays an integral role
in maintaining the structural integrity of tissues. Cadherins are transmembrane proteins that
consist of an extracellular domain for homophilic binding to cadherins on adjacent cells, a
transmembrane domain, and an intracellular domain.
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Figure 2.16: Primary associations of structural proteins at cadherin-based adherens junctions. Actin
filaments are interconnected through α-actinin and associated with the membrane via vinculin. The
vinculin’s head domain is connected with E-cadherin through α-,β-, and γ-catenins. The vinculin’s
tail domain forms a bond with both membrane lipids and actin filaments [29]. From [1].

Cadherin-mediated interactions underpin the formation and maintenance of tissue and organ
structure and function. Yet, the role of cadherins extends beyond merely acting as molecular
’glue’. They also serve as scaffolding for actin’s contractile forces, facilitating the transmission
of mechanical forces arising from actin-myosin contractility [30]. When two neighboring cells
adhere, cadherins from membrane bind with each other, forming an adhesive junction. Their
intracellular domains connect to the actin cytoskeleton through catenin proteins, creating a
cadherin-catenin-actin complex that allows force transmission across cells. Additionally, this
complex undergoes force-induced conformational changes, enhancing cell-cell adhesion and
enabling cells to adapt to varying tissue tension and withstand mechanical stress.

Aside from cell-cell junctions, cells also interact with their surroundings through cell-ECM
adhesions, which are critical in maintaining tissue structural integrity and directing diverse
cellular functions. These adhesions generate and transmit traction forces, which can impact
various aspects of cell mechanics, such as cell shape, structural organization, and migration.

Extracellular Matrix Interactions

The extracellular matrix (ECM) is an essential component of tissue and organ structure. It
is a complex network composed of diverse bioactive components, including proteins such as
collagen, elastin, fibronectin, and laminin, as well as polysaccharides like hyaluronic acid.
These components work together to provide mechanical support, maintain cell-to-cell com-
munication, and contribute to various physiological processes such as cellular differentiation,
proliferation, migration, and tissue repair. The unique composition of the ECM within differ-
ent tissues dictates its specific properties and functions, contributing to the diversity observed
in living systems .

Many components of our body look like composite materials, the ECM being the matrix
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tying-up all the disparate components with each other, collagen being our most important
protein, accounting for ≈ 25% of our dry body mass. A comprehensive understanding of cell
mechanics requires to take into account these additional forces and structures, however they
are very varied and interact with cells in very varied ways, and are thus complicated to model.
In our studies, we focus on a simple and general description of cell mechanics, in order to
discover general principles, and never take into account the role of extracellular matrix.

Volume control and osmotic pressure

Cells manage their volume through a variety of mechanisms that act to balance the inward
and outward movement of water and ions, a process known as osmoregulation. This is crucial
to prevent either excessive swelling or shrinking, which could lead to cell damage or even
death. Cellular volume control is a complex process involving multiple mechanisms that work
in concert to maintain the balance of water and ions in the cell.

Figure 2.17: Cells swells in a hypotonic environnement, and shrink in an hypertonic environnement.
From [1].

Osmotic pressure is the pressure resulting from the difference of chemical potential between
different solutions. It can be illustrated by a simple experiment depicted bellow, where move-
ment of water across a semi-permeable membrane is produced, due to a difference in solute
concentration. Cells maintain their osmotic pressure through a meticulously balanced con-
trol of its concentration of ions mainly comprising sodium, potassium, calcium, and chloride.
Within the cytoplasm, maintaining a controlled concentration of these ions is crucial in nu-
merous cellular functions such as signal transduction and pH balance. Cells maintain the
proper balance of ions inside its volume through the use of ion channels and pumps embedded
in their membranes. These ATP-dependent specialized proteins can open or close in response
to various signals and can transport ions against their concentration gradient.

Besides, the cell membrane is semi-permeable, and water can freely move across it, driven by
osmosis. In addition to these channels and pumps, cells use organelles such as vacuoles to
manage their water content. In plant cells, the central vacuole can store water and change
its volume to adjust the cell’s overall volume. In animal cells, smaller vacuoles and vesicles
can move substances in and out of the cell, including water, to help maintain osmotic balance.

The pressure within the cell is equilibrated by viscous flow, which is a fast process compared
to many other diffusion-driven processes within a cell. Thus in most applications, the hy-
pothesis of a uniform pressure across the cell is very reasonable. Cell internal pressure is
the consequence of the cell membrane and cortex trying to minimize their surface at a fixed
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Figure 2.18: The membrane is semi-permeable and only let water flow. Adding C6H12O6 ions to this
solution leads to water flows until the osmotic pressure equilibrates. From [31].

Figure 2.19: Left: Topology of the Drosophila egg chamber. Ring cells are connected with each other
through ring canals, down to the oocyte. Middle: The cytoplasm flow according to Laplace law, from
the smallest cells to the biggest ones. Right: 3D rendering of a confocal image of cell membranes
(Clip170::GFP). From [32].

volume. A good example of this is given by the equilibrium situation, where we can model
cells membranes as foam bubbles, that have a fixed surface tension, and therefore follows
Laplace law. Situations similar to the two-bubble experiment [33], where the smaller bubble
empties itself into the larger one due to differences in pressure, can be found in the biological
world. In the Drosophila egg chamber, nurse cells (smaller cells) transfer their cytoplasmic
content to the oocyte (the bigger cell), leading to its growth [32], according to these laws.
The analogy between such behaviors thus reinforces the credibility of a model of internal cell
pressure driven by volume control and surface energy minimization.
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2.1.3 Experimental measurements of Stresses and forces

Micropipette aspiration

Micropipette aspiration is a versatile and powerful technique that has been widely used in
the field of biophysics to explore and quantify the mechanical properties of individual cells
and tissues. It works by applying a known negative pressure Pc through a precisely controlled
pipette to a cell or a tissue fragment, which is then aspirated into the micropipette. The
portion of membrane inside the pipette, initially possessing a curvature radius Rc, reaches a
new mechanical equilibrium, characterized by its curvature radius Rp. As we know the applied
pressure Pc, we can retrieve the surface tension via the Young-Laplace equation (applied twice
to eliminate the unknown internal cell pressure):

γcm = Pc

2 ( 1
Rp
− 1

Rc
) (2.1)

Figure 2.20: Micropipette aspiration allow to measure the surface tensions of external membranes.
From [34].

The micropipettes used in this process typically range in size depending on the specific ap-
plication, but they generally have an inner diameter between 20-50 micrometers. It has been
observed that too small pipettes tends to detach the actin from the cortex, leading to the
formation of blebs and to innacurate measurements of the surface tension. Beyond surface
tension, observing the time-dependent deformation of a tissue sample during micropipette
aspiration also allows for the measurement of viscosity in tissues [35].

Atomic Force Microscopy

Atomic force microscopy (AFM) is a high-resolution scanning technique that can measure
the surface topography of a material at the atomic level [36–38]. The fundamental principle
behind AFM is to scan the surface with a mechanical probe a mechanical probe (also known
as a cantilever with a sharp tip at the end). As the cantilever is brought close to the sample
surface, forces between the atoms on the probe tip and those on the sample surface cause the
cantilever to deflect. These forces can be attractive or repulsive, depending on the distance
between the tip and the sample. A laser beam is focused onto the backside of the cantilever,
and as the cantilever moves up and down due to the atomic forces from the sample, the re-
flected laser beam moves correspondingly. A position-sensitive photodetector measures this
movement and thus generates a signal that is proportional to the cantilever deflection, which
is then converted into a distance.

AFM can be used to probe cell tensions by measuring the mechanical properties of the cells,
such as their elasticity or stiffness [39,40]. This is achieved by pressing the cantilever against
the cell surface and observing the deflection. The AFM tip is moved towards the cell surface
until it deforms the cell. The force exerted by the cell (in response to the deformation) and the
deformation depth are then recorded, providing a measure of the cell’s mechanical response.
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Figure 2.21: Atomic Force Microscopy allow to proble to mechanical properties of the cell. From [39].

From this, one can derive parameters like the Young’s modulus (a measure of stiffness) of the
cells, which is directly related to the tension within the cell. High tension corresponds to a
high Young’s modulus (i.e., the cell is stiffer), and low tension corresponds to a low Young’s
modulus (i.e., the cell is softer) [41].

Studies have shown that the mechanical properties of cells, such as their elasticity or rigidity,
can affect cell differentiation [42–44]. AFM, with its ability to measure these mechanical prop-
erties at a high resolution, has been instrumental in establishing a quantitative understanding
of the mechanical factors that influence cell differentiation. For instance, stem cells, which
are undifferentiated and have the ability to differentiate into various cell types, have been
shown to be softer than their differentiated counterparts. Such discoveries have had wide
implications in regenerative medicine and tissue engineering.

Droplet Microinjection

Mechanical forces play a critical role during tissue morphogenesis and organ formation in
embryos. They influence cellular behavior and can sculpt embryonic tissues, maintaining or-
gan architecture. However, since recently, it has not been possible to measure cellular forces
within developing three-dimensional tissues in vivo, making it challenging to understand how
these forces shape embryonic organs.

Figure 2.22: The microdroplets are fluorescent, allowing their shape deformations to be tracked in
time using images from confocal microscopy. They are coated with adhesion-receptor ligands (Right:
in green) to adhere to neighboring cells. From [45].

In [45], the authors developed a method involving the injection of fluorescent, cell-sized lipid
microdroplets made with biocompatible oil, into the embryonic tissues. These microdroplets
serve to probe the mechanics of the embryo without disrupting development. The micro-
droplets are coated with adhesion receptor ligands and their shape deformations can be mea-
sured using fluorescence microscopy and numerical image analysis. These shape deformations
represents proxy measurements of local stresses. With this method, the authors performed
the quantification of cell-generated mechanical stresses within living embryonic tissues.
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Figure 2.23: A magnetic droplet acts as a tunable mechanical actuator to probe the mechanical
aspects of the microenvironnements of tissues. From [46].

In a follow-up study [46], the authors extended the method with ferrofluid droplets, that act
as mechanical actuators and allow to probe the viscoelastic responses of tissues, by measuring
the dynamics of the deformation of the droplets. These methods constitutes a novel way of
probing quantitatively the mechanics of the cellular microenvironnement in-vivo, allowing for
a better understanding on how these properties may affect cell migration, differentiation, and
even tumor progression.

2.1.4 Emerging properties of tissues: Rigidity transitions

Jamming, glassy and rigidity phase transitions

Phase transitions are physical phenomena characterized by an abrupt change in a macro-
scopic property of the system, called the order parameter, under a smooth and continuous
variation of a control parameter. The existence of observed rigidity transition, where the
tissue fluidizes or rigidifies itself, lead to profound analogies with a rich array of systems where
such rigidity transitions have been observed, mostly under the concept of jamming and glass
transition, where, depending on the conditions, the system can exhibit both solid-like and
liquid-like behavior. Although these phenomena share some similarities in the way they af-
fect the macroscopic properties of materials, they refer to distinct processes and occur under
different conditions.

Jamming refers to a transition from a flowing state to a rigid or ”jammed” state that occurs
in disordered systems of particles when the density of particles, or the size of the fluctuations,
passes a certain threshold [47]. This concept was first introduced in [48], by analogy with
traffic jam, and shortly applied to physics and material science [49,50]. Examples of systems
where jamming can occur include granular materials (such as sand or grain), foams, and emul-
sions. When the particles in these systems are loosely packed and the density is low, they can
flow and rearrange themselves easily. However, as the density increases, the particles become
so closely packed together that they become trapped in a disordered, rigid configuration and
cannot move easily. This is the jammed state, and it’s characterized by a sudden increase in
the system’s shear modulus (resistance to shear stress).

On the other hand, the glass transition is a phenomenon that occurs in amorphous (non-
crystalline) materials such as polymers, certain molecular liquids, and glasses. As these mate-
rials are cooled below a certain temperature (known as the glass transition temperature, Tg),
they transition from a liquid state to a glassy or vitrified state. Unlike a traditional phase
transition (like freezing), this process does not involve a change in the microscopic arrange-
ment of particles; instead, it’s associated with a drastic increase in the material’s viscosity
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Figure 2.24: Particles too closely packed together become trapped in a disordered, rigid configuration
and cannot move easily.

and a decrease in molecular mobility. The resulting glassy state is mechanically rigid but
retains the disordered molecular structure of a liquid. The physical mechanism behind this
unique property of glass is related to its energy landscape, which is characterized by a rough,
rugged terrain filled with numerous local potential energy barriers. As the temperature de-
creases, these barriers become increasingly insurmountable for the constituent particles, be
they atoms, ions, or molecules. As a result, the glassy system is trapped in one of these local
minima, much like a mountaineer unable to descend a rugged landscape due to the presence
of steep cliffs.

Figure 2.25: Glassy systems are characterized by a rough energy landscape. From Chiara Cammarota.

In both jamming and glass transitions, the system is characterized by an inability to reach
the state of minimum energy, or ground state. While both jamming and the glass transition
result in a system transitioning to a rigid state, they are fundamentally different phenomena.
Jamming is induced by changes in density or applied stress and can occur at any temperature,
whereas the glass transition is induced by changes in temperature and can occur at any den-
sity. Furthermore, the glass transition involves a significant change in molecular or particle
mobility over a broad range of timescales, whereas jamming results in a sudden locking of the
particles’ positions. The framework of rigidity transitions has been applied to understand the
dynamics of biological systems, such as embryonic development, tissue homeostasis, wound
healing, and cancer progression [51]. Rigidity transitions are everywhere, and the application
of this concept brought from statistical mechanics to biology is one of the most impressive
successes of modern biophysics.



74 CHAPTER 2. CELLS AND BUBBLES

Rigidity transitions in biology

From a phenomenological point of view, tracking cells in epithelia offers many insights about
their behavior. As amorphous solids, cells exhibit a ”caged behavior”, where they are trapped
into a potential well, and escapes from it only episodically, the local thermal fluctuations
being to little to allow for frequent neighbor exchange and fluidity. In a tissue, the crossing
of energy barrier corresponds to a T1 topology transition, i.e a neighbor exchange between
cells, that allow them to relax.

Figure 2.26: Caged behavior can be observed both in-vivo (Left: Zebrafish Pre-Somitic Mesoderm
(PSM) exhibit a caged behavior while cells from the Mesodermal Progenitor Zone (MPZ) move more
freely. Right: Vertex model simulations reproduce these two observed phenotypes). From [52,53].

From a modelling point of view, this analogy between the rigidity transition in tissues and the
one encountered in soft-matter physics seems quite evident in retrospective, as vertex models
used in biophysics were first used in foam physics. Two seminal papers [53,54] observe a density
independent transition 2D vertex models, analog to glass transitions. They characterizes the
system by using an adimensional shape index for each cell, relating its perimeter P and its
area A:

p0 = P√
A

(2.2)

This control parameter leads to a rigid system once it crosses a certain threshold p∗
0 = 3.81.

It offers clear structural signature to relate the microscopic and the macroscopic behavior of
a system, that can be tested experimentally [55].

Several new criterias, such as ones based on the graph structure and Maxwell’s rigidity crite-
rion has been proposed since then [56], and unifying theories are emerging [57,58]. Magnetic
droplets [46], that we introduced before, are able to probe the material properties of differ-
ent regions of the zebrafish embryo, and have shown successfully demonstrate how rigidity
transitions are able to sculpt embryonic tissues [52]. New experimental observations also cor-
roborate the importance of fluctuations in cell sorting [?,59], and offer a more comprehensive
understanding of tissue mechanics. Rigidity transitions are a very good example of a collective
process that happens at large scale and that really shapes the tissue, where a complex system
can be described in a coarse grained manner. As in thermodynamics, we can rely on simple
observables (the shape index, the graph structure) to obtain insightful informations about the
coarse-grained behavior of the system.
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Figure 2.27: Particles too closely packed together become trapped in a disordered, rigid configuration
and cannot move easily. From [53].

The principle of jamming and rigidity transitions in tissues provides an insightful perspective
on the organization and dynamics of cellular systems. It is a general principle applicable to
the morphogenesis of many systems. To obtain a quantitative understanding of the intricate
and system-specific mechanisms that underlie development, we now have to integrate this
principle with other concepts, such as morphogen gradient patterning [60].
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2.2 Bubbles and Tissues

As explained before, the analogy between bubbles and tissues has been proposed as early as
in the early 20th century by d’Arcy Thomson [27]. He observed that the patterns seen in
clusters of cells, such as in a developing embryo or plant tissue, often resemble the patterns
formed by soap bubbles, because both cells and soap bubbles are subject to similar physical
constraints and forces, that is, area minimization under the constraint of volume conservation.

Figure 2.28: Some biological tissues ressembles closely to foam bubbles, and can be explained using
the same physics. From [61,62].

This simple analogy has been the basis of many physical approaches modelling tissues,where
the shape of cells effectively minimizes a surface energy, due to surface-tension driven forces,
called vertex models.

2.2.1 Vertex models

Vertex models have been a common mathematical framework used to describe the behavior of
cell packings in biological tissues. They provide a way to quantify and simulate the geometric
and mechanical properties of cells and tissues, making them a powerful tool in the study
of biological processes like tissue morphogenesis, wound healing, and tumor growth. These
models are often quite complicated to implement. Indeed, as cells are modeled as polygons,
one has to take care of collisions as well as more intricate topology operations, as we will see
later in the introduction.

The term ”vertex model” comes from the fact that these models represent the junctions be-
tween cells (where cell membranes meet) as vertices in a graph. The edges of the graph then
correspond to the cell membranes, and the spaces enclosed by these edges represent the cells
themselves. This provides a simplified, abstract representation of the tissue, focusing on the
arrangement and interaction of the cells.

In the first (and maybe simplest) version of a 2D vertex model, proposed by [63–66], each
cell is represented as a polygon. In this model, epithelia are composed of a sheet of cells of
similar height that are connected via cell-cell adhesion. This is justified by the observation of
the widely studied wing disc of Drosophila. In this animal, the adhesion molecule Cadherin
and components of the actin cytoskeleton are enriched apicolaterally. Cell packing geometry
can be defined by the network of adherens junctions.

This network is described by a vertex model with Nc polygonal cells numbered by α ∈ [1, ...Nc]
and Nv vertices, numbered i ∈ [1, ...Nv] at which cell edges meet. Stationary and stable
network configurations satisfy a mechanical force balance, which implies that at each vertex,
the total force F⃗i vanishes. We describe these force balances as local minima of an energy
function E , that describes forces due to cell elasticity, actin-myosin bundles, and adhesion
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Figure 2.29: Vertex models aims at reproducing cell dynamics observed in the wing disc of Drosophila.
From [63].

molecules:

E =
∑

α
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∑
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Λlij (2.3)

The force moving the vertices positions x⃗i is defined by : F⃗i = −∂E

∂x⃗i
.

Aα is the area of the polygon α, A0 is the target area, which is determined by cell height and
cell volume, and lij denotes the length |x⃗i − x⃗j | of the junction linking vertices i and j and
the sum over < i, j > is over all edges.

K is an elastic coefficient, Γ describes the contractility of the perimeter Lα which could reflect,
for example, the mechanics and contractility of the actin-myosin ring, and Λij describes line
tensions at junctions between individual cells. Biologically speaking, line tensions expresses
the joint effect of myosins and cadherins on the contractility of the actomyosin cortex. They
can be reduced by increasing cell-cell adhesion or reducing actin-myosin contractility.

Figure 2.30: Three stable states can exist, depending on the parameters: an hexagonal network, a
soft network, or an unstable collapsed network. From [63].
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This simple model is able to capture the collective behavior of cells in a tissue, taking into ac-
count the physical and mechanical interactions between the cells. By adjusting the parameters
in the model, one can simulate different conditions and study how these affect the behavior
of the tissue. It appears that there is only three possible states depending of the line tensions
and the contractility : an hexagonal network, a soft network, or an unstable collapsed network.

Figure 2.31: New models, closer to the biological objects studied are emerging, taking into account new
features like intercellular spaces and more complex cell shapes, allowing for a more precise comparison
between experiments and modeling, allowing to disentangle the effects of cell density and of adhesion
in jamming. From [67].

Vertex models have been used to study a wide range of phenomena, from the folding of ep-
ithelial tissues into complex shapes during morphogenesis, to the invasive behavior of cancer
cells in a tumor. They provide a bridge between the microscopic properties of individual cells
and the macroscopic behavior of the tissue as a whole, making them a key tool in the field
of computational biology. An essential feature of these models is their geometry. Going from
the polygonal shapes to a description of cells where every cell is a manifold that is modelled
via a closed polygonal line [67] (or a triangle mesh in 3D [68]), one can describe more complex
cell shapes, thereby capturing the true variety of cell shapes observed in biological tissues
and considering the potential role that these different shapes can play in tissue behavior and
development.

Another advancement made possible by such numerical model is the incorporation of extra-
cellular spaces [68]. Traditional vertex models often assume that cells are tightly packed with
no extracellular space. In contrast, describing cells as manifolds allows to take into account
the presence of extracellular spaces, which are the gaps between cells filled with extracellular
fluid and matrix. This addition is important because extracellular spaces can significantly
influence the mechanical properties of the tissue and the behavior of cells.
We are going to do simulations based on the minimization of surface energy, but in 3D, with
a geometrical description of the cell as individual manifolds, i.e bounded volumes. This is a
description as close to the reality as one can get, there is nothing beyond this: Cells are really
3D bounded volumes. Before introducing our computational model, we will first study the
mathematics of the bubbles and area minimization surfaces, from which the physics of active
foams emerges.
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Figure 2.32: We will describe cells as 3D bounded volumes. Their geometry can be expressed in a
discretized fashion using triangle meshes.

2.2.2 Introduction: Bubbles and the isoperimetric problem

Bubbles, particularly bubble clusters and foams, have been a topic of interest across a multi-
tude of fields, including biology, physics, engineering, and even culinary arts. The fascination
with bubbles dates back to Ancient Greece with the isoperimetric problem - a mathematical
problem that involves finding the shape that would enclose the maximum area with a given
perimeter, for which severely incomplete geometric proofs have been proposed: Archimedes
250 B.C., Zenorodus 175 B.C., Pappus 325 A.D., and continues to interest numerous mathe-
maticians, witnessing new advances in recent years.

The proof of the isoperimetric problem was presented only two thousand years later, in the
late 1830s by Jakob Steiner [69]. The three-dimensional counterpart - the problem of the
sphere being the shape enclosing the maximum volume with a given surface area - was solved
by Hermann Schwarz in 1884 [70]. The shapes of other multi-cell bubble clusters have been
progressively determined, and the theory has witnessed several recent breakthroughs [71,72].
However, the high mathematical difficulty of these problems spurred the development of phys-
ical simulation tools designed to characterize foams by solving an optimization problem.

Figure 2.33: The isoperimetric problem involves finding the shape with the maximum area given a
specific perimeter. Though it was first formulated in Ancient Greece, a solution was not found until
more than 2000 years later.

2.2.3 The isoperimetric problem in 2D

The heuristic argument of the regular polygon

We will give a heuristic argument to justify the following lemma (This argument is based on
a proof of Jakob Steiner [69]):

Among all 2n-sided polygons with the same length L , the regular 2n-gon has the largest area.
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Figure 2.34: For a+b fixed, c fixed, the area of the following polygon is maximal when a=b.

Suppose that two adjacent edges had different lengths a,b. Then we could cut off this from
our polygon, and consider its area A, that we can compute with Heron’s formula, after having
defined the half perimeter d = (a + b + c)/2:

A =
√

d(d− a)(d− b)(d− c) (2.4)

If a + b = l is fixed, we can write b = l − a, and compute the derivative of the area:

∂A

∂l1
= −

√
d(d− c)(l − 2a

2
√

(d− a)(d− l + a)
(2.5)

Thus the area is maximized when a = l/2, i.e when the triangle is isocele. By symmetry, this
implies that on the area-maximizing 2n-gon of length L , all the edges are equal.

Figure 2.35: Regular N-polygons eventually converge to a circle.

As the set of regular polygons converges into a circle, the unique solution of the isoperimetric
problem will be the circle.

The variational calculus

Another approach can be obtained using variational calculus [70]. Let’s parametrize our curve
with as a function r : [0, 1] 7→ R2:

r(t) = (x(t), y(t)) with r(0) = r(1) (2.6)

Its perimeter can be computed by integrating its coordinate:

P =
∫ 1

0

√
(x′(t))2 + (y′(t))2dt (2.7)

And its area can be obtained using Green’s theorem:

A = 1
2

∫ 1

0
[xy′ − x′y]dt (2.8)

We want to find, for a fixed area A, the curve r that minimizes the perimeter P . We can
solve this problem using a Lagrange multiplier, by maximizing the following functional:
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J (r) = P (r) + λ(A(r)) (2.9)

J (r) =
∫ 1

0

√
(x′(t))2 + (y′(t))2 + λ

2 [xy′ − x′y]dt (2.10)

We call the functional L(r, r′) = L(
[
x
y

]
,

[
x′

y′

]
) =

√
(x′(t))2 + (y′(t))2 + λ

2 [xy′ − x′y].

The Euler-Lagrange theorem states that for any function r that is stationnary for J, t 7→ ∂L
∂r′

is derivable and:

∂L

∂r
− d

dt

(
∂L
∂r′

)
= 0 (2.11)

This gives us a pair of Euler-Lagrange equations:

d
λdt

(
y(t) x′(t)√

(x′(t))2 + (y′(t))2

)
= 0 (2.12)

d
λdt

(
x(t)− y′(t)√

(x′(t))2 + (y′(t))2

)
= 0 (2.13)

Without any loss of generality, we can parametrize r with the arclength (i.e
√

(x′(t))2 + (y′(t))2 =
1) and thus obtain:

λy + x′ = b and λx− y′ = a (2.14)

We reparametrize X = x−a, Y = y−b and combine both equations into a second-order linear
differential equation:

λ2x + X ′′ = 0 λY = −X ′ (2.15)

Which gives us X = 1
λ cos(t− t0) and Y = 1

λsin(t− t0), the equation of a circle.
A minimal curve, assuming existence, is thus necessarily a circle.

Curvature and Laplace’s Law

For a curve r : R 7→ R2 that is C2(R), the curvature is defined at any point as the inverse of
the radius of its osculating circle at this given point.

The functional J expresses the physics of a 2D bubble, which is a 1D contour that tries to
minimize is interfacial energy while keeping its area fixed. The first part of the functional J
can be interpreted as the energy of a 2D bubble, that depends on the length of the contour
of the curve, its perimeter P :

E = γP, (2.16)

where γ is the interfacial tension of the curve.

Laplace’s law relates the curvature between two regions of pressure p1 and p2, of pressure
differential ∆p = p2 − p1 and the interfacial tension of a soap film between these two regions.
If we write κ the curvature of the curve, we have:

Laplace’s Law (1D curve in 2D space):
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Figure 2.36: The curvature of the curve κ is the inverse of the radius of its oscillating circle, also
called its radius of curvature r. From [73].

∆p = κγ (2.17)

We will follow the demonstration of [74], that we adapted to the 1D setting, that derives
Laplace’s law from a computation of energy established in [75]. For a curve at mechanical
equilibrium, the amount of work δW needed to move the contour of the curve to an infinites-
imal distance is equal to zero. This work can be expressed as the sum of two components.
Let’s call δWp the work exerced by the pressures and δWγ the work exerced by the interfacial
tension.

δWp =
∫

r
(p2 − p1)δξdl (2.18)

δWγ =
∫

r
γδl (2.19)

Figure 2.37: Parametrization of the curve.

We need to compute the length variation of the curve δl

dl = Rdθ = dθ

κ
(2.20)

dl∗ = ( 1
κ

+ δξ)dθ (2.21)

Which allows to compute δl:

δl = dl′ − dl = δξdθ = δξdlκ (2.22)
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Thus the whole work δW writes:

δW =
∫

r
(p2 − p1)δξdl − γδξdlκ =

∫
r

δξdl(p2 − p1 − γκ) (2.23)

As this is true for any elementary deformation δξ. The fundamental lemma of calculus of
variation thus states that:

∆p = γκ, (2.24)

which is Laplace’s Law.

2.2.4 The isoperimetric problem in 3D

In three dimensions, we need to consider surfaces, which are maps R2 7→ R3. In such surfaces,
there are two principal curvatures κ1, κ2, and two osculating circles.

Figure 2.38: The curvature of the curve κ is the inverse of the radius of its oscillating circle, also
called its radius of curvature r. From [73].

These two principal curvatures forms two quantities that we will encounter a lot during this
phd:

Gaussian Curvature: g = √κ1κ2 (2.25)

Mean Curvature: h = κ1 + κ2
2 (2.26)

In 3D, as in 2D, a foam is physically defined by its surface energy E and its surface tension
γ, and the total area of its surfaces S:

E = γS. (2.27)

To obtain the shape of a foam, one has to minimize this surface energy, while keeping the
volume of each bubble fixed. This, in essence, states that bubbles will always try to minimize
their surface area.

As in 2D, we have Laplace’s Law (see [74] for a derivation), that reads:

∆p = γ(κ1 + κ2) = 2γh, (2.28)
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which leads to the fact that all the surfaces have a constant mean curvature. In two-
dimensional constructs, mean constant curvature curves are circular arcs. However, in 3D,
constant mean curvatures are richer, and are not limited to spherical caps, and can include
for instance a ”saddle structure”, with a constant mean curvature but a varying gaussian
curvature.

Figure 2.39: Left: A cylinder has zero gaussian curvature but non-zero mean curvature. Middle:
A bubble has constant mean and gaussian curvature. Right: A saddle surface has a constant mean
curvature but a varying gaussian curvature. From [73].

When the topology is richer, we can also observe other types of surfaces, as the famous
catenoid structure that can be observed experimentally:

Figure 2.40: A catenoid has a constant mean curvature. From [76].

To describe the geometry of bubbles, one have to consider not just the tension in the bubble
walls, but also at the lines and points where they meet, a concept known as Plateau’s Laws.
Plateau’s Laws describe the structure of soap films and bubbles in equilibrium and can be
summarized as follows:

• Soap films are always smooth and continuous.

• They have a constant mean curvature

• The edges of soap films, known as Plateau borders, meet in threes along an edge and
they do so at an angle of arccos(-1/2) = 120 degrees.

• The Plateau borders meet in fours at a vertex, and they do so at the tetrahedral angle
of about 109.5 degrees.

Despite this seemingly simple geometrical behaviours, dealing with clusters becomes increas-
ingly complicated as we move from two to three dimensions, from homogeneous (same surface
tension) to heterogeneous (different surface tensions), and from monodisperse (same volumes)
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to polydisperse (different volumes) bubbles. In this case, one has to define the surface tension
of each soap film γm, its surface Sm, and the volume of each bubble V 0

i , and the mechanical
problem can be seen as an optimization of the following lagrangian:

L =
∑
m

γmSm −
∑

i

Pm(Vm − V 0
m) (2.29)

Where the pressure appears as Lagrange multipliers of the volume-conservation constraint.

The third plateau law expresses the mechanical equilibrium between three surfaces that want
to minimize their surface energy. In the case of non-uniform surface tensions, this has to be
generalized into the Young-Dupré relationship:∑

m

γ⃗m = 0⃗ (2.30)

Figure 2.41: Clusters of up to four cells are composed of assemblies of spherical caps. However, for a
six cells cluster, we can observe in the middle a saddle surface, of constant mean curvature that is not
a spherical cap. From [77].

For clusters composed of four cells or fewer, the geometry can be described as an assembly
of spherical caps. However, for five or more cells, the geometry remains uncertain. Because
of the mathematical complexity of the bubbles clusters, numerical simulations have emerged
as a powerful tool to advance our understanding. One such example is Sullivan’s numerical
proof which has exhibited a counter example of a six-cell clusters with a saddle interface [71].
Thus, in the case of six cells, interfaces are not necessarily spherical. Heterogeneous clusters
add more complexity, with non-spherical and different junction types in 3D.

Understanding bubble clusters carries great importance for practical applications. It pertains
to the science of packing and area/volume ratio considerations, which have implications for
foam design in engineering, crystallography, and even culinary applications, such as creating
the best foamy cappuccino. Understanding bubble clusters also allows us to perform force
inference algorithms, which is particularly important in biological systems and one of the
main advances of my PhD work.

2.3 The toy model of the doublet

One of the simplest model of heterogenous foam is the doublet. A doublet is naturally axisym-
metric, which drastically limits the number of variables necessary to describe its geometry.
The parametrization below is a refinement based on the model [68]. We will parametrize the
system, and give state equations characterising the equilibrium of the system. Solving this
system of equations will then allow us to find the geometrical parameters corresponding to
the given surface tensions and volumes.
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Geometric parametrization

The parametrization of the doublet has been performed by Fabrice Delbary and Hervé Turlier.

Figure 2.42: Cell doublet geometric parametrization.

We consider two spherical cells 1 and 2 of respective centre C1 and C2, joined by a spherical
interface 3 of centre C3 such that C3 ∈ (C1, C2). The centre of the intersection circle C
between the cells is denoted by O and its radius by h. We assume that the cells are not
tangent, that is h > 0. We consider an oriented (Oz) axis with origin O and unit direction
vector ez = (C2 − C1)/|C2 − C1|. For α ∈ (−π, π) \ {0}, Sh,α denotes the spherical cap of
centre zh,α = −h cot α and radius |rh,θ| where rh,θ = −h csc α defined by:

Sh,α = {zh,α + rh,α(sin θeφ + cos θez) ; eφ · ez = 0, |eφ| = 1, θ ∈ [π − |α|, π + |α|]}.

In other words, for α ∈ (−π, 0), Sh,α is the spherical cap of centre zh,α and radius |rh,θ| located
on the left of the origin O and for α ∈ (0, π), Sh,α is the spherical cap of centre zh,α and radius
|rh,θ| located on the right of the origin O. In the limit case α = 0, we have Sh,0 = C. The cell
1 and 2 are respectively defined by Sh,α1 and Sh,α2 with α1,∈ (−π, 0) and α2 ∈ (0, π). The
interface 3 is defined by Sh,α3 with α3 ∈ (α1, α2). We denote by Ψ⃗ ≡ (h, α1, α2, α3) the vector
of variables parametrizing the doublet geometry, which spans the following open subset of R4:

D = {Ψ⃗ = (h, α1, α2, α3) ; h > 0, α1 ∈ (−π, 0), α2 ∈ (0, π), α3 ∈ (α1, α2)}.

The surface tensions of each surfaces are denoted by γ1, γ2, γ3. The respective volumes of cells
1 and 2 are denoted by v1 and v2. If we denote by Ai the areas of the surfaces i, the surface
energy E of the system is given by

E(Ψ⃗, γ1γ2, γ3) =
∑

i

Aiγi = π

3 h2
(

γ1
1 + c1

+ γ2
1 + c2

+ γ3
1 + c3

)
, (2.31)

where :

c1 = cos α1, s1 = sin α1

c2 = cos α2, s2 = sin α2

c3 = cos α3, s3 = sin α3.
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The expression for the volumes of cells 1 and 2 are:

v1(Ψ⃗) = 2πh3
(
−s1(2 + c1)

(1 + c1)2 + s3(2 + c3)
(1 + c3)2

)
v2(Ψ⃗) = 2πh3

(
s2(2 + c2)
(1 + c2)2 −

s3(2 + c3)
(1 + c3)2

)

In the following, for sake of simplicity, we define E = E
2π

and vk = Vk

2π
for k ∈ {1, 2} so that

we have
E = h2

(
t1

1 + c1
+ t2

1 + c2
+ t3

1 + c3

)
, (2.32)

and

v1 = h3
(
−s1(2 + c1)

(1 + c1)2 + s3(2 + c3)
(1 + c3)2

)
,

v2 = h3
(

s2(2 + c2)
(1 + c2)2 −

s3(2 + c3)
(1 + c3)2

)
.

To impose conservation of the volume, we will find the solution of the Lagrangian:

L(h, α1, α2, α3) = E − P1(v1 − v0
1)− P2(v2 − v0

2) (2.33)

2.3.1 State equations

Deriving the Lagrangian E − P1w1 − P2w2 with respect to α1 and α2, we easily get the
Lagrange multipliers

P1 = − t1s1
3h

, P2 = t2s2
3h

.

Deriving with respect to h and α3 and replacing by the values of P1 and P2, we get the balance
of forces at the joining points, and find back Young-Dupré relations:

t1c1 + t2c2 + t3c3 = 0, t1s1 + t2s2 + t3s3 = 0.

Finally, finding the possible extrema of the energy E amounts to seek for the solutions of the
following system with unknown h, α1, α2, α3

t1c1 + t2c2 + t3c3 = 0, (2.34a)
t1s1 + t2s2 + t3s3 = 0, (2.34b)

h3
(
−s1(2 + c1)

(1 + c1)2 + s3(2 + c3)
(1 + c3)2

)
= v1, (2.34c)

h3
(

s2(2 + c2)
(1 + c2)2 −

s3(2 + c3)
(1 + c3)2

)
= v2. (2.34d)

We see that there is a zero mode on the equations (2.34a) and (2.34b). We can thus fix one
surface tension, lets say t3 = 1, without any loss of generality.

2.3.2 Computation of mathematical quantities

Explicit computation

We call the vector containing the state equations the state vector, denoted S⃗. It contains the
state equations that we have to respect.
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S⃗(Ψ⃗, Π⃗) =



t1c1 + t2c2 + t3c3

t1s1 + t2s2 + t3s3

h3
(
− s1(2+c1)

(1+c1)2 + s3(2+c3)
(1+c3)2

)
− v0

1

h3
(

s2(2+c2)
(1+c2)2 − s3(2+c3)

(1+c3)2

)
− v0

2


The state equations can thus be rewritten :

S⃗(Ψ⃗, Π⃗) = 0⃗ (2.35)

As said in the introduction, for given parameters Π⃗ we can find the optimal parameters Ψ⃗∗,
that minimizes all the state equations:

Ψ⃗∗ : Ψ⃗ such that S⃗(Ψ⃗∗, Π⃗) = 0⃗ (2.36)

With this simple model, we can explore the phase space of the doublet, and see which config-
urations are available.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0
detachment
Internalization
Internalization

γ1

γ 2

Figure 2.43: With γ3 fixed to one, we can see several behaviours depending on the values of the two
surface tensions γ1 and γ2: Cell-Cell contact, detachment and internalization (1 internalized by 2 or 2
internalized by 1).

We demonstrated that our model of a doublet, representing an active foam with two cells,
is capable of recovering Young-Dupré and Laplace relations and present an interesting phase
diagram. However, the problem’s complexity was significantly reduced by the presence of a
symmetry that enabled an efficient two-dimensional parametrization. Extending this approach
to systems with three, four, or more cells appears to be highly challenging. Consequently, to
model more complex systems, we propose employing three-dimensional simulations, in which
we optimize the surface energy of a surface mesh.

2.3.3 Numerical representation of 3D geometries

Describing surfaces in a computer involves dealing with a mathematical representation of
these surfaces. Though mathematically, every surface represented in a fine enough manner
will eventually converge into its continuous representation, in practice, this is a highly critical
choice. Indeed, choosing a way to represent the surface will impact the computation of its
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geometrical properties, the way to deal with intersections, and more critically, the body of
existing work one can rely on to build its simulation engine. The two primary methods for
surface representation in computer graphics are explicit and implicit modeling. The choice
between these two depends on the application requirements and the level of complexity in-
volved.

Explicit Representation

In explicit representation, each point on the surface is defined directly. For instance, in 3D
graphics, a common explicit representation is a mesh of polygons (usually triangles or quadri-
laterals), where the vertices of the polygons correspond to points on the surface. Each polygon
is defined by its vertices, and together, the polygons form the surface.

The advantage of this representation is its simplicity and the ease with which it can be ren-
dered graphically. It is a method commonly used in computer graphics, physics simulation
and video games. However, it has some disadvantages. It might be challenging to maintain
the continuity and smoothness of the surface, especially when modifying it, since each poly-
gon is defined independently. Moreover, complex operations like boolean operations can be
difficult to perform.

Non-Uniform Rational Basis Splines (NURBS) are another way to describe explicitely the
surface. NURBS are a type of parametric curves or surfaces, which are defined by a set of
control points with associated weights. The non-uniform aspect refers to the parameterization
of the curve or surface, which does not necessarily progress at a uniform rate along the shape.
This allows for greater flexibility in shaping the curve or surface. The word rational refers to
the use of weights, which provide even further control over the shape of the curve or surface.
NURBS are widely used in computer graphics, especially in CAD (Computer-Aided Design)
and 3D modeling software, due to their versatility and precision in representing complex
organic and mechanical shapes.

Figure 2.44: Non-Uniform Rational B-Splines (NURBS) are used for modeling smooth curves and
surfaces in computer graphics and CAD. From [78].

Implicit representation

On the other hand, implicit representation defines a surface as the set of points that sat-
isfy a particular equation. For example, a sphere can be implicitly represented as the set of
points (x, y, z) that satisfy the equation x2+y2+z2−r2 = 0, where r is the radius of the sphere.

The most known form of implicit surfaces are level sets [79]. The level set method is a
numerical technique for describing shapes using a scalar field. The fundamental idea is to
represent the surface as the zero level set of a higher dimensional function, typically referred
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to as the level set function ϕ(x, t), where x represents the spatial position and t the time. It
is described by the following equation:

ϕ(x, t) = 0 (2.37)

Figure 2.45: Illustration of the level set method in 2D. From [80].

A very popular level-set is the signed distance function. A signed distance function (SDF)
is a function whose value at any point in space gives the shortest (Euclidean) distance to
a specific surface, and is positive if the point is outside the surface, negative if the point is
inside, and zero if it’s on the surface. In mathematical terms, the signed distance function
(SDF), denoted D, for a point p in space and a closed surface S in the 3D space, is defined
as:

D(p) = sign(d(p)) ·min
q∈S
∥p− q∥ (2.38)

Where:

• p is a point in space,

• q is a point on the surface S,

• ∥p− q∥ is the Euclidean distance between p and q,

• minq∈S denotes taking the minimum over all q on the surface S,

• d(p) is an auxiliary function that provides the unsigned distance to the surface, and

• sign(d(p)) is the sign function that is negative if the point p is inside S and positive if
it is outside.

One advantage of implicit representations is that they are compact, and can represent smooth
and complex shapes easily. Boolean operations (union, inclusion, intersection, and difference)
are also straightforward with implicit representations.

However, implicit representations can be more challenging to render graphically compared
to explicit representations. To draw an implicitly represented surface, we typically need to
use techniques like ray tracing or convert the implicit representation into an explicit one, a
process that can be computationally expensive.
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Both explicit and implicit representations have their strengths and weaknesses, and the choice
between them depends on the specific requirements of the task at hand. In this thesis, we
will follow the approaches of previous works in the modelling of foam physics, and decide to
model our cells using triangle meshes.

Surface Evolver

The Surface Evolver [81] is a software widely used in the field, that allows to model bubble
clusters under various conditions. In our lab, we use a more sophisticated software that take
into account different materials and allow for complex topology changes [68,82]. This software
allowed us to explore various sophistications of the model, as its confinement inside a shell,
or the addition of line tensions, far more rapidely than with a mathematical analysis. In the
following of the introduction, we will implement a minimal version of the surface evolver, to
show the user the power and the difficulties of numerical modeling of heterogeneous foams.

Figure 2.46: Simulation software can minimize surface energy via gradient descent and reproduce
minimal surfaces observed experimentally with soap-films. From [81].
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2.4 Why are bubbles not cubic ? A toy implementation of
gradient descent to perform shape optimization

We will start by providing a minimal python implementation of a foam model, for a single
cell described by a manifold l. Let’s list all the ingredients that we need:

• A mesh on which we perform the optimization

• A way to compute the effective energy

• A way to compute the gradient of this energy with respect to the vertices

• A gradient-descent procedure

And that’s it ! By far, the most challenging step is to compute the gradient of the energy.
In this minimal implementation, we will show the power of reverse-mode differentiation to
compute such gradients, and propose an implementation in PyTorch [83].

Motivation: A short introduction to PyTorch

Automatic differentiation (AD) is a powerful computational technique for evaluating deriva-
tives of functions expressed as computer programs, enabling the efficient and accurate com-
putation of gradients, Jacobians, and Hessians. First introduced by [84] and later refined
by [85], AD has become a fundamental tool for optimization, machine learning, and numeri-
cal simulations. Unlike symbolic differentiation, which can lead to complex and cumbersome
expressions, and finite difference methods, which suffer from numerical instability and ap-
proximation errors, AD computes derivatives algorithmically by applying the chain rule of
calculus to elementary operations, while maintaining the original function’s computational
structure [86].

Over the past decade, the field of deep learning has seen tremendous advances, attracting
the attention of major industry players like Google and Facebook, which have developed
deep learning libraries to simplify the development of new architectures. One such library,
PyTorch [83], provides high-level abstraction for various tasks related to optimization. We
have implemented a minimal foam model in PyTorch to harness its powerful optimization
capabilities. The library offers high level abstraction of many useful routines, among which:

• Automatic computation of the gradients with graph-decomposition of the computations
and backpropagation

• Gradient-based optimization routines (Methods with momentum, Adam...)

• Use of graphical processing units to parallelize computations (Basically PyTorch is just
a Python API to highly optimized C++/CUDA rountines)

These features make PyTorch an indispensable tool for optimizing complex functionals, and
our work relies heavily on this. Automatic differentiation is typically implemented in two pri-
mary modes: forward and reverse. Forward mode computes the derivative of each intermediate
variable with respect to the input variables, whereas reverse mode calculates the derivative
of the output variables with respect to each intermediate variable. While forward mode is
efficient for functions with few inputs and many outputs, reverse mode is more suitable for
functions with many inputs and few outputs, as often encountered in machine learning [87].
By leveraging the automatic differentiation engine of PyTorch, our optimization procedures
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benefit from its continuous improvements. In practice, using the right tools, such as PyTorch,
is as important as having the right ideas, enabling us to iterate faster with cleaner code and
bring our ideas to fruition.

Initial mesh We define our mesh by providing a list of vertices {x⃗i}nv
1 and a list of triangles

(also called faces), {ti}nt
1 , where each triangle t is composed of three vertices: t = (x⃗α, x⃗β, x⃗γ).

2.4.1 Effective energy

When minimizing a numerical quantity, we note Φ the quantity to be minimized.

Mathematical expression

In a first approach, we do impose volume conservation using lagragian multipliers as we did
for the doublet. We provide a simpler formulation of the energy that contains two terms: the
surface energy, and the volume conservation penalization.

E = γlAl (2.39)
Ev = k

(
Vl − V 0

l

)2 (2.40)
Φ = Eeff = E + Ev = γlAl + k

(
Vl − V 0

l

)2 (2.41)

To simplify the expression, we choose γl = 1 and V 0
l = 1, the energy is thus:

Φ = Al + k
(
Vl − 1

)2 (2.42)

We need to compute the volume and the area of our manifold l.

Numerical computation of the area

Each interface area and its gradient can be decomposed into a sum over its triangles, so we will
start with the formula for a single triangle only, defined by its three vertices: t = (x⃗α, x⃗β, x⃗γ).
The area At of the triangle t is:

At = 1
2 ||(x⃗β − x⃗α) ∧ (x⃗γ − x⃗α)|| (2.43)

The total area of the manifold l is thus:

Al =
∑
t∈l

At (2.44)

As the expression is based on a sum over all the triangles, numerically, we can do the compu-
tation for each triangle in a parallel fashion using numpy or torch., and perform the sum in
the end. We call such implementation a vectorialized implementation.

Numerical computation of the volume

It is also possible to obtain a expression for the volume based on a sum over all the triangles,
but its derivation, based on Stokes theorem, is less straightforward, and is detailed in the
appendix A.

Vl = 1
6

∑
(x⃗α,x⃗β ,x⃗γ)∈l

det(x⃗α, x⃗β, x⃗γ) (2.45)
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2.4.2 Gradient-descent procedures

Gradient descent

Gradient descent is a fundamental optimization technique for minimizing an objective function
Φ. It updates the position of each vertex x⃗i based on the gradient with respect to x⃗i:

x⃗i ← x⃗i − η
∂Φ
∂x⃗i

(2.46)

where η is a step size, called the learning rate. Choosing the appropriate learning rate is
crucial, as a large learning rate can lead to faster optimization but may result in instability,
while a small learning rate ensures more stable convergence at the cost of a greater number of
iterations. Some methods use a scheduled decrease of the learning rate, taking smaller steps
as the solution approaches the local minimum.

Momentum method

A popular variation of the gradient descent method is the momentum method, which incor-
porates a momentum term to accelerate convergence and reduce oscillations. The momentum
method can be expressed as:

v⃗i ← µv⃗i − η
∂Φ
∂x⃗i

(2.47)

x⃗i ← x⃗i + v⃗i (2.48)

where v⃗i is the velocity vector, and µ is the momentum coefficient. However, the momentum
method has limitations, such as its sensitivity to the choice of learning rate and momentum
coefficient.

Adam

To address these limitations, the Adam (Adaptive Moment Estimation) optimization algo-
rithm was introduced by [88]. Adam combines the benefits of both momentum and adaptive
learning rates, updating the position of each vertex as follows:

m⃗i ← β1m⃗i + (1− β1) ∂Φ
∂x⃗i

(2.49)

v⃗i ← β2v⃗i + (1− β2)
(

∂Φ
∂x⃗i

)2
(2.50)

ˆ⃗mi ←
m⃗i

1− βt
1

(2.51)

ˆ⃗vi ←
v⃗i

1− βt
2

(2.52)

x⃗i ← x⃗i − η
ˆ⃗mi√

ˆ⃗vi + ϵ
(2.53)

where m⃗i and v⃗i are the first and second moment estimates, β1 and β2 are exponential decay
rates, t is the time step, and ϵ is a small constant to prevent division by zero. Adam’s adaptive
learning rates and momentum-based approach make it particularly well-suited for large-scale
optimization problems and noisy gradients, often encountered in machine learning and other
complex applications.
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The Adam Zoo

Adam proved to be computationally efficient, with low memory requirements and invariance
to diagonal rescaling of gradients, making it well-suited for large-scale problems involving data
and/or parameters. Furthermore, the algorithm was able to handle non-stationary objectives
and problems with very noisy and/or sparse gradients.

In the same paper, [88] proposed AdaMax, a variant of the Adam algorithm that relies on
the infinity norm. The main difference between Adam and AdaMax lies in the way they up-
date their second moment estimates. While Adam uses an exponentially decaying average of
squared gradients, AdaMax employs an exponentially decaying average of the infinity norm
of the gradients. This modification makes AdaMax more robust to extreme gradient values
and provides better performance in certain optimization scenarios.

Continuing the development of Adam variants, [89] introduced AdamUniform, close to Adamax,
which applies the infinity norm over time. This leads to more smooth results in the context
of mesh-based optimization. Most recently, [90] proposed VectorAdam, a rotation-equivariant
modification of the Adam optimization algorithm. The authors observed that traditional
Adam is not rotation-equivariant for vector-valued parameters, leading to significant artifacts
and biases. By accounting for the vector structure of optimization variables, VectorAdam
resolves these issues and offers equivalent or even improved rates of convergence for machine
learning and traditional geometric optimization problems. We refer the reader to the corre-
sponding papers for a proper introduction and definition of these methods.

2.4.3 The torch implementation

1 impor t numpy as np
2 impor t t o r c h
3

4 ”””
5 V e r t i c e s a r e impor ted as a [ nv , 3 ] f l o a t a r r a y | Faces a r e impor ted as a [ nt , 3 ]

i n t a r r a y
6 They a r e c on v e r t e d as t o r c h t en so r , and we i n d i c a t e tha t we w i l l need the

g r a d i e n t w i th r e s p e c t to the v e r t i c e s by p u t t i n g Ve r t s . r e q u i r e s g r a d to True
7 ”””
8 Verts , Faces = np . l oad ( ” Mesh cube . npy ” , a l l o w p i c k l e=True )
9 Ver t s = t o r c h . t e n s o r ( Ve r t s )

10 Faces = t o r c h . t e n s o r ( Faces [ : , : 3 ] )
11 Ver t s . r e q u i r e s g r a d = True
12

13 # We p r o v i d e two r o u t i n e s to compute a r e a s and volumes o f a r r a y s
14 de f compute vo lume man i fo ld ( Verts , Faces ) :
15 Coords = Ve r t s [ Faces ]
16 c r o s s p r o d s = t o r c h . c r o s s ( Coords [ : , 1 ] , Coords [ : , 2 ] , dim=1)
17 d e t e r m i n a n t s = t o r c h . sum( c r o s s p r o d s ∗ Coords [ : , 0 ] , dim=1)
18 Vol = t o r c h . sum( d e t e r m i n a n t s ) /6
19 r e t u r n ( Vol )
20

21 de f comput e a r ea man i f o l d ( Verts , Faces ) :
22 Coords = Ve r t s [ Faces ]
23 c r o s s p r o d s = t o r c h . c r o s s ( Coords [ : , 1 ] − Coords [ : , 0 ] , Coords [ : , 2 ] − Coords [ : , 0 ] ,

dim=1)
24 Areas = 0 .5∗ t o r c h . norm ( c r o s s p r o d s , dim=1)
25 r e t u r n ( t o r c h . sum( Areas ) )
26

27 Vo lume ta rge t = t o r c h . t e n s o r ( 1 . 0 ) #Equal to i n i t i a l volume
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28 k = t o r c h . t e n s o r ( 1 0 0 . 0 ) #S t i f f n e s s
29 o p t i m i z e r =t o r c h . optim . Adam ( [ { ’ params ’ : Verts , ’ l r ’ : 0 . 0 0 1 } ] ) #Cho ice o f g r a d i e n t

d e s c en t scheme
30

31 f o r i i n range (10000) :
32 o p t i m i z e r . z e r o g r a d ( ) #Put Ve r t s . grad to 0
33 S u r f a c e e n e r g y = comput e a r ea man i f o l d ( Verts , Faces )
34 V o l u m e p e n a l i z a t i o n = ( k+i ) ∗( Vo lume target −compute vo lume man i fo ld ( Verts ,

Faces ) ) ∗∗2
35 E f f e c t i v e e n e r g y = S u r f a c e e n e r g y + V o l u m e p e n a l i z a t i o n
36 E f f e c t i v e e n e r g y . backward ( ) #Update Ve r t s . grad
37 o p t i m i z e r . s t e p ( ) #Update Ve r t s a c c o r d i n g to the g r a d i e n t d e s c en t schemes

2.4.4 Results

Figure 2.47: Results after 10000 iterations with different gradient descent approaches. Non-regularised
approaches does not perform well, no matter the gradient-based optimization scheme.

Running the optimization reveal that non-regularized approaches of various gradient-based
optimization schemes performs badly, irrespective of the optimization technique employed.
The problem can be understood simply: The optimization leads to degenerate triangles, that
lead to an incorrect numerical determination of the geometrical quantities of interest. We pro-
pose a solution involving gradient regularization via diffusion, which gives the expected result.

Figure 2.48: Non-regularized optimizations lead to triangles with degenerate shapes.

With this regularized solution, we end up with a final volume Vf = 0.998 and a final area
Af = 4.785. We can do a little check. The initial volume of our cube is of V0 = 1, and its
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area is A0 = 6. If we end up with a perfect sphere, the radius R of the sphere is related to
the volume and the area via the formulas:

Vs = 4
3πR3 and As = 4πR2 (2.54)

With Vs = 1, we have R =
(

3
4π

) 1
3 and thus the final area should be As = 4π

(
3

4π

) 2
3 =

(4π)
1
3 3 2

3 ≈ 4.836. Quite close ! We note that on our implementation both the area and the
volumes are a little lower than the exact values for a sphere, because the volume conservation
is not a rigid constraint. The error obtained in the end could be lower but raising the
term k in the volume penalization energy, but this raises another problem which is: Is the
simulation physical ? In practice, if we neglect any source of noise (starting with the thermal
noise), a biological system would just fall into a local minimum of energy. Our gradient-based
optimization scheme leads us to a local minmum as well, but we are not sure that they are
the same. However here, in the case of a single cell, the local minimum is also the global
minimum.

Figure 2.49: Our regularised optimization converges to the expected bubble shape: a perfect sphere.

2.5 Improvements of the implementation

2.5.1 Surface energy and gradients

We provide a more appropriate way of formulating the problem, where the volume is conserved
at each iteration of the optimization [68,81]. We find a local minimum of the energy by doing
a gradient-based optimization. We consider a mesh describing one cell. The surface energy
and Lagrangian function are defined as follows:

E = γlAl (2.55)
L = E − pl

(
Vl − V 0

l

)
(2.56)

Where pl and V 0
l are respectively the pressure and the target volume value of the cell. As

before, we choose γl = 1 and V 0
l = 1, thus the lagrangian is:

L = Al − pl

(
Vl − 1

)
(2.57)

From the Lagrangian function, one can calculate the force f⃗k on each vertex of the mesh
x⃗ ∈ {x⃗α}nv

α=1 as follows

f⃗ = −∂L
∂x⃗

= −∂Al

∂x⃗
+ pl

∂Vl

∂x⃗
(2.58)
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We note that when the mesh is at equilibrium, we have f⃗ = 0⃗, and thus have, for each vertex
x⃗:

∂Al

∂x⃗
= pl

∂Vl

∂x⃗
, (2.59)

that relates the surface tensions and the pressures. We will later demonstrate that they lead
to Laplace-like equations in the discrete setting.

2.5.2 Volume-conservation implementation

We define three scalars O, Q and R:

O =
(∑

i

∂Vl

∂x⃗i
· ∂Vl

∂x⃗i

)
(2.60)

Q =
(∑

i

∂E
∂x⃗i
· ∂Vl

∂x⃗i

)
(2.61)

R = Vl − V 0
l (2.62)

Force correction

If we displace each vertex using a gradient descent, to the first order, the volume change
induced by each vertex displacement will be:

δVx⃗i
= f⃗x⃗i

· ∂Vl

∂x⃗i
(2.63)

And thus the total volume change will be :

δVl =
∑

i

δVx⃗i
=
∑

i

f⃗x⃗i
· ∂Vl

∂x⃗i
(2.64)

We can anihilate this volume change but changing the force correction by choosing instead as
a force:

f⃗x⃗i
−

(∑
j f⃗x⃗j

· ∂Vl
∂x⃗j

)
· ∂Vl

∂x⃗i(∑
i

∂V
∂x⃗i
· ∂V

∂x⃗i

) (2.65)

The displacement for each vertex will be

δVx⃗i
=

f⃗x⃗i
−

(∑
j f⃗x⃗j

· ∂Vl
∂x⃗j

)
· ∂Vl

∂x⃗i(∑
i

∂V
∂x⃗i
· ∂V

∂x⃗i

)
 · ∂Vl

∂x⃗i
(2.66)

and thus the total displacement will be:

δVl =
∑

i

δVx⃗i
=
∑

i

f⃗x⃗i
−

(∑
j f⃗x⃗j

· ∂Vl
∂x⃗j

)
· ∂Vl

∂x⃗i(∑
i

∂V
∂x⃗i
· ∂V

∂x⃗i

)
 · ∂Vl

∂x⃗i
= 0 (2.67)

If we define Fl = QO−1, the force correction is simply:

f⃗x⃗ ← f⃗x⃗ − Fl ·
∂Vl

∂x⃗
(2.68)
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Motion correction

The motion correction has for goal to correct the volume if it is not equal to the target
volume. This corrects for drift in volume, which happen for optimizations with many time-
steps because of numerical noise and because the force correction is only first order.
Lets define M = QO−1, This motion correction will be implemented by displacing the vertices:

x⃗← x⃗−Ml ·
∂Vl

∂x⃗
(2.69)

.
M is expressed as :

M = Vl − V 0
l(∑

i
∂Vl
∂x⃗i
· ∂Vl

∂x⃗i

) (2.70)

at the first order, the volume change is thus:

δVl =
∑

i

δVx⃗i
= −

∑
i

∂Vl

∂x⃗i

Vl − V 0
l(∑

j
∂Vl
∂x⃗j
· ∂Vl

∂x⃗j

)
 · ∂Vl

∂x⃗i
= V 0

l − Vl (2.71)

2.5.3 Gradient descent with a line-search

The gradient descent procedures described before were interesting, and all useful in practice,
but we rely on a more robust procedure, that is called a line search: It is a naive gradient
descent, with the peculiarity that the learning rate lr will be adapted (lowered or raised) for
each step: We start from a initial learning rate, and try to update the position of the vertices.

• If our new energy is bigger than the original one, our learning step is two big, and thus
we will decrease it progressively until the new energy is lower than the original one

• If our new energy is lower than the original one, we can try to increase our learning step
by multiplying it with a factor β, as long as our new energy continues to decrease.

2.5.4 The new implementation for a single cell

Let’s implement all these elements in Python. As before, we rely on PyTorch to compute the
gradient of the energy. To implement the volume control, we need to define the matrices P, Q,
R, that are all 1×1 matrices (scalars). As before, we obtain the gradients via automatic differ-
entiation, but this time we use another pytorch routine, torch.autograd.function.jacobian, that
gives the jacobian of a given function. We provide a short implementation of our algorithm
(80 lines of codes for a physics-simulation algorithm is really not much).

1 impor t numpy as np
2 impor t t o r c h
3

4 ”””
5 V e r t i c e s a r e impor ted as a [ nv , 3 ] f l o a t a r r a y | Faces a r e impor ted as a [ nt , 3 ]

i n t a r r a y
6 They a r e c on v e r t e d as t o r c h t en so r , and we i n d i c a t e tha t we w i l l need the

g r a d i e n t w i th r e s p e c t to the v e r t i c e s by p u t t i n g Ve r t s . r e q u i r e s g r a d to True
7 ”””
8 Verts , Faces = np . l oad ( ” Mesh cube . npy ” , a l l o w p i c k l e=True )
9 Ver t s = t o r c h . t e n s o r ( Ve r t s )

10 F a c e s l a b e l = t o r c h . t e n s o r ( Faces [ : , 3 : ] )
11 Faces = t o r c h . t e n s o r ( Faces [ : , : 3 ] )
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12 Ver t s . r e q u i r e s g r a d = True
13

14 # We p r o v i d e two r o u t i n e s to compute a r e a s and volumes o f a r r a y s
15 de f compute vo lume man i fo ld ( Verts , Faces ) :
16 Coords = Ve r t s [ Faces ]
17 c r o s s p r o d s = t o r c h . c r o s s ( Coords [ : , 1 ] , Coords [ : , 2 ] , dim=1)
18 d e t e r m i n a n t s = t o r c h . sum( c r o s s p r o d s ∗ Coords [ : , 0 ] , dim=1)
19 Vol = t o r c h . sum( d e t e r m i n a n t s ) /6
20 r e t u r n ( Vol )
21

22 de f c o m p u t e s u r f a c e e n e r g y ( Verts , Faces ) :
23 Coords = Ve r t s [ Faces ]
24 c r o s s p r o d s = t o r c h . c r o s s ( Coords [ : , 1 ] − Coords [ : , 0 ] , Coords [ : , 2 ] − Coords [ : , 0 ] ,

dim=1)
25 Areas = 0 .5∗ t o r c h . norm ( c r o s s p r o d s , dim=1)
26 r e t u r n ( t o r c h . sum( Areas ) )
27

28 with t o r c h . no grad ( ) :
29 Vo lume ta rge t = compute vo lume man i fo ld ( Verts , Faces ) #Equal to i n i t i a l

volume
30

31 f o r i i n range (10) :
32 ###
33 #Computat ion o f the g r a d i e n t w i th r e s p e c t to the ene rgy and the volumes
34 ###
35 E grad = t o r c h . autograd . f u n c t i o n a l . j a c o b i a n ( lambda x :

c o m p u t e s u r f a c e e n e r g y ( x , Faces ) , Ve r t s )
36 V grad = t o r c h . autograd . f u n c t i o n a l . j a c o b i a n ( lambda x :

compute vo lume man i fo ld ( x , Faces ) , Ve r t s )
37

38 ###
39 #Computat ion o f the volume c o n t r o l c o r r e c t i o n s
40 ###
41 O = t o r c h . sum( t o r c h . sum( V grad ∗ V grad , dim=1) )
42 Q = t o r c h . sum( t o r c h . sum( E grad ∗( V grad ) , dim=1) )
43 R = ( compute vo lume man i fo ld ( Verts , Faces )−Vo lume ta rge t )
44 F = Q/O
45 M = R/O
46

47 ###
48 #A p p l i c a t i o n o f the f o r c e and volume c o n t r o l c o r r e c t i o n s :
49 ###
50 Ver t s . grad=E grad − F∗ V grad
51 with t o r c h . no grad ( ) : Verts−=V grad ∗M
52

53 ###
54 #L i n e s e a r c h s t e p :
55 ###
56 C u r r e n t s u r f a c e e n e r g y = c o m p u t e s u r f a c e e n e r g y ( Verts , Faces )
57 l r = 0 .01
58 beta = 1 .5
59 Vert s new = Ver t s − l r ∗ Ver t s . grad
60 N e w s u r f a c e e n e r g y = c o m p u t e s u r f a c e e n e r g y ( Verts new , Faces )
61 n s t e p s = 0
62

63 i f New su r f a ce ene rgy<=C u r r e n t s u r f a c e e n e r g y :
64 w h i l e New su r f a ce ene rgy<C u r r e n t s u r f a c e e n e r g y :
65 C u r r e n t s u r f a c e e n e r g y = N e w s u r f a c e e n e r g y
66 l r = l r ∗ beta
67 Vert s new = Ver t s − l r ∗ Ver t s . grad
68 N e w s u r f a c e e n e r g y = c o m p u t e s u r f a c e e n e r g y ( Verts new , Faces )
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69 n s t e p s+=1
70 e l s e :
71 w h i l e C u r r e n t s u r f a c e e n e r g y <N e w s u r f a c e e n e r g y :
72 l r = l r ∗(1/ beta )
73 Vert s new = Ver t s − l r ∗ Ver t s . grad
74 N e w s u r f a c e e n e r g y = c o m p u t e s u r f a c e e n e r g y ( Verts new , Faces )
75 ns teps −=1
76

77 ###
78 #G r a d i e n t de s c en t s t e p
79 ###
80 with t o r c h . no grad ( ) : Verts−= l r ∗ Ver t s . grad

In conclusion, PyTorch proves to be an advantageous tool for quickly testing new concepts,
given its ease of use and versatility. Generalizing this approach to several cells is not very
complicated. However, when aiming for robust solutions, we must turn to more sophisticated
approaches. Two significant challenges emerge in this context - managing clusters containing
multiple cells and handling collisions.

2.6 Real-life implementation

2.6.1 Data-structure: Representing several cells in 3D

Figure 2.50: Each triangle has two labels: inside/outside materials. By convention, the faces normals
(defined by the right-hand rule) are oriented towards the inside. From [82].

A bounded volume can be defined by a manifold mesh thas as a consistent orientation of tri-
angles, where each triangle’s vertex ordering and the right-hand rule define a normal direction
pointing towards the interior. Representing multiple bounded volumes with a non-manifold
mesh necessitates an n-ary material classification, because mesh normals are insufficient. Fol-
lowing earlier works by [81, 82], each material is assigned a unique integer label, and these
labels are applied to both the front and back of each triangle (i.e., each half-face has a la-
bel). In a comparable 2D polygon example, colors represent labels. The left image illustrates
the material regions (including the ”exterior” orange region), while the right image displays
the corresponding mesh with edges having two labels each. This representation necessitates
consistent material labels: all half-faces enclosing a closed region must have identical labels.
By maintaining and leveraging this expanded concept of mesh orientation, watertight regions
can be defined.

In this context, the term ”region” refers to a closed volume of space, while ”material” denotes
a region’s type as indicated by its labels. Consequently, two regions can be made of the
same material, but a region cannot consist of multiple materials. In order to handle complex
scenarios, we will utilize the software developped in [68], that uses [82] as backend. This
sophisticated software is written in C++ for optimal performance. Each iteration of the
software consists of several intermediate steps, including:

• Computing the current energy
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Figure 2.51: Our multimaterial meshes data-structure generalizes elegantly the manifold data struc-
ture to several materials.

• Calculating the energy gradient

• Applying volume control corrections to adjust vertex positions and gradients

• Updating vertex positions using a line-search method

• Use multitracker to manage non-manifold mesh operations: collision, detection, remesh-
ing, topology transitions..

The idea behind Multitracker [82] is to start as an input with a correct multimaterial mesh,
and vertex displacements. The software returns you a correct mesh with the given displace-
ments executed as best as possible, along with some refinement operations. These operations
encompass collision detection, mesh improvement and material merging, separation of differ-
ent materials, and T1/T2 topology transitions. We will see throughout this thesis that the
software is capable of efficiently and effectively managing a wide range of complex situations.

Figure 2.52: Illustrations of merging, T1 and T2 topology changes in 2D. From [82].

2.6.2 Solving topology transitions

In the field of foam physics, the study of T1 and T2 topology transitions plays a crucial role
in understanding the behavior and properties of foams. These transitions, initially introduced
by [91], provides a taxonomy of the possible rearrangements of foam structures and provides
insights on their stability under various conditions. When considering cells or tissues modeled
as heterogeneous foams, we encounter the same types of topology changes. However, in
foams there is not necessary volume conservation for each closed domain and thus domains
can disappear, leading to a coarsening of the foam. In biological systems, at intermediate
timescales (slow enough to allow for relaxation, but fast enough to avoid any long-term drifts
[92]), except when cells divide, their volumes are kept constant, as they are filled with water,
an incompressible fluid. In tissues, surface tensions can vary over time, potentially leading to
topological transitions.
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T1 transitions occur during a neighbor exchange inside the foam. Cells rearrange their edges
and vertices to adopt a new configuration. This process involves the disappearance of an
interface separating two cells, followed by the appearance of a new interface connecting a
different pair of cells.

T1 Topology transitions are driven by surface tensions changes

Figure 2.53: The instability of interfaces are due to Young-Dupré relations that makes a junction line
shrink. Thus the associated interfaces shrink with them.

For any given junction between three materials i, j, k, we have a Young-Dupré relation that
can be written as

γ⃗ij + γ⃗jk + γ⃗ki = 0⃗ (2.72)

For any surface tension vector γ⃗, we write ||γ⃗|| = γ. This is only possible if three triangular
relationships are verified:

γij < γjk + γki

γjk < γij + γki

γki < γij + γjk

Resolution of topology transitions

Figure 2.54: Solving topology transitions consists of finding the configurations containing irregular
vertex configurations, and restoring it into a regular configurations. This is much easier in 2D than in
3D.

Addressing topology transitions involves identifying configurations that contain irregular ver-
tex arrangements and transforming them into regular configurations (Figure 2.54). This
process is considerably simpler in 2D compared to 3D (Figure 2.55). During the simulation,
such as the gradient descent, the mesh is examined at each step to detect irregular vertex
configurations. When an irregular configuration is discovered, it is resolved to restore a regu-
lar arrangement. Following this resolution, the simulation proceeds, ensuring that the overall
mesh maintains its desired structure and properties.

T1 topology transitions: encompasses a wide variety of phenotypes

A T1 topology transition happens when at one junction the surface tensions equilibrium
could not be respected. In this case, one of the interfaces shrink until new cell-cell contacts
are created. However, in some cases the creation of new cell contacts is not possible, or



104 CHAPTER 2. CELLS AND BUBBLES

Figure 2.55: In 3D, even a simple T1 transition requires to solve many complicated intermediate
steps. From [82].

not sufficient to restore the equilibrium. In this case, a T1 transition2 can lead to a richer
number of situations: internalization or cell detachment. On the toy-model of the doublet, we
demonstrated that we could obtain such situations with certain surface tensions combinations.
With our 3D implementation, we are able to reproduce the phenotypes that we found earlier
with our model of the doublet [68], and that also correspond to in-vivo phenotypes (Figure
2.56).

Figure 2.56: Multitracker remeshing, merging and T1 topology changes operations allows to reproduce
the configurations of detachement and of cell internalization encoutered in our model the doublet.
(Cells are rendered as translucid materials, to observe ingressed cell in the case of internalization). We
can observe the phenotype of internalization on blastomeres from mouse early embryos [68]

2We argue that this is a special case of a T1 transition. T1 transition is not limited to the classical situation
of Figure 2.53
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2.6.3 What is a good mesh ?

We said that Multitracker [82] did refinement operations in order to maintain a good mesh-
quality. But what is a good mesh ? During the previous optimization, the surface energy and
gradient formulas were defined using geometrical quantities that make sense when defined on
continuous surfaces: areas Am, volumes Vl, area derivatives ∂Am

∂x⃗
and volume derivatives ∂Vl

∂x⃗
.

In a triangle mesh, these quantities have to be defined discretely, and often several possible
formulae exist for a single geometrical quantity.

A mesh is a discrete approximation of a continuous surface. When the number of vertices
nv and the number of triangles nt goes to infinity, this approximated surface converges to a
smooth surface. A good mesh and a good formula are thus a mesh and a formula with which
the computation of the geometrical quantity of interest approximates well the real quantity
in the surface that the mesh is trying to approximate. This is a very unpractical definition,
as it provides no metric to estimate how good or how bad a mesh is.

The field of discrete differential geometry precisely aims at proposing robust formulas to
compute quantities on meshes, as well as general principles to define, create and repair meshes
in order to have good meshes. Indeed, there are very general rules that makes a mesh good or
bad in general. We have to keep in mind that discrete differential geometry is an experimental
science: people use general rules that ”are logical”, that ”make sense”, but are not always
backed by theorems, and constitutes just ”good practises” that one need to follow.:

• Quality of Triangles: The quality of the triangles is critical. Ideally, the triangles should
be as equilateral as possible. Extremely elongated or flat triangles can cause numerical
issues in calculations.

• Uniformity: A good mesh has relatively uniform triangle sizes across the surface. Uni-
formity ensures smooth surface representation and helps avoid numerical problems in
many calculations, such as finite element analysis or geometric computations.

• Manifoldness: A manifold mesh means that the neighborhood of each vertex resembles a
disc. In other words, each edge should be shared by exactly two triangles. Non-manifold
meshes, where an edge is shared by more than two triangles or a vertex belongs to non-
connected edges, can lead to problems in many geometry processing algorithms.

• No Self-Intersections: Self-intersecting meshes can lead to unexpected results in render-
ing and physics simulations.

• Smoothness: If representing a smooth surface, the mesh should approximate the sur-
face’s curvature as closely as possible. The triangle normals should vary smoothly over
the surface.

In the case of the area derivative, cotangents naturally appear (see Appendix A). cotan(θ)
diverges at θ = 0. Thus during the optimization process, if one of the angles of the triangles
goes to 0 (or equivalently is the area of one of the triangles goes to 0), we encounter singulari-
ties in the area derivatives, and thus numerical instabilities. This is why the gradient-descent
diverged at some point.

This mesh-based description is quite practical, as it allows to take advantage of the huge
body of work available in the litterature to measure geometrical quantities, repair and refine
meshes, and do physical simulations. One of our cardinal ideas has thus been to develop
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Figure 2.57: The discrete derivative of the area of a triangle cotains a cotanθ in its mathematical
expression, diverges if some angles of triangles θ are equal to zero.

robust methods to extract meshes from biological data, to fill the gap between the biological
data and the physical models.

In next chapter, we develop Delaunay-Watershed an algorithm to convert instance segmen-
tation masks (easily available since the advent of deep learning) into multimaterial meshes,
and we develop an algorithm to perform tension inference.
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Chapter 3

Embryo mechanics cartography:
inference of 3D force atlases from
fluorescence microscopy

Written in collaboration with Fabrice Delbary, Alex McDougall, Rémi Dumollard and Hervé
Turlier.

This work resulted in a publication, currently under revision and available on bioRχiv.

This project was the main focus of my Ph.D. thesis. Once I understood that multimaterial
meshes were the right data structure to study heterogeneous foams numerically, I developed
Delaunay-Watershed, a method to extract such meshes from segmented data. From there,
the next steps were quite obvious: One can easily extract geometrical quantities from such
meshes, such as angles and curvatures, and use them to invert equilibrium equations to infer
forces. Then, I validated this procedure by generating images from simulations before apply-
ing this procedure to real data. It was quite a surprise to see that this procedure scaled so
well, and that we were able to find meaningful tension patterns of surface tension on Phallusia
Mammillata embryos of up to 800 cells. An important lesson of this work is that open-access
data allowed us to greatly accelerate the application of our work. To conclude, it is interesting
to notice that this project was not the hardest one of my PhD, but it was well executed and
solves an important problem, and will thus probably be the one that will have the biggest
impact. I picked a low-hanging fruit.

The morphogenesis of tissues and embryos results from a tight interplay be-
tween gene expression, biochemical signaling and mechanics. Although sequenc-
ing methods allow the generation of cell-resolved spatio-temporal maps of gene
expression in developing tissues, creating similar maps of cell mechanics in 3D has
remained a real challenge. Exploiting the foam-like geometry of cells in embryos,
we propose a robust end-to-end computational method to infer spatiotemporal
atlases of cellular forces from fluorescence microscopy images of cell membranes.
Our method generates precise 3D meshes of cell geometry and successively pre-
dicts relative cell surface tensions and pressures in the tissue. We validate it
with 3D foam simulations, study its noise sensitivity, and prove its biological rel-
evance in mouse, ascidian and C. elegans embryos. 3D inference allows us to
recover mechanical features identified previously, but also predicts new ones, un-
veiling potential new insights on the spatiotemporal regulation of cell mechanics
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in early embryos. Our code is freely available and paves the way for unraveling
the unknown mechanochemical feedbacks that control embryo and tissue mor-
phogenesis.
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Chapitre 3

Cartographie de la mécanique de l’embryon
: inférence d’atlas de forces 3D à par-
tir de la microscopie à fluorescence
Écrit en collaboration avec Fabrice Delbary, Alex McDougall, Rémi Dumollard et Hervé
Turlier.

Ce travail a abouti à une publication, actuellement en révision et disponible sur bioRχiv.

Ce projet était le principal projet de ma thèse de doctorat. Après avoir compris que les mail-
lages multimateriaux étaient la structure de données appropriée pour étudier numériquement
les mousses hétérogènes, j’ai développé Delaunay-Watershed, une méthode pour extraire de
tels maillages à partir de données volumétriques segmentées. Les étapes suivantes étaient
évidentes : Il est facile d’extraire des quantités géométriques de ces maillages, telles que les
angles et les courbures, et les utiliser pour inverser les équations d’équilibre afin de déduire les
forces. J’ai ensuite validé cette procédure en générant des images à partir de simulations avant
d’appliquer cette procédure à de vraies données. Ce fut une agréable surprise de constater
que cette procédure se généralisait a des plus gros amas de cellules, et que nous étions capa-
bles de trouver des motifs de tension significatifs de tension de surface sur des embryons de
Phallusia Mammillata contenant jusqu’à 800 cellules. Une leçon importante de ce travail est
que les données en accès libre nous ont permis d’accélérer grandement l’application de notre
travail. Pour conclure, il est intéressant de noter que ce projet n’était pas le plus difficile
de mon doctorat, mais il a été bien exécuté et résoud un problème important, et sera donc
probablement celui qui aura le plus grand impact.

La morphogenèse des tissus et des embryons résulte d’une étroite interaction entre
l’expression génétique, la signalisation biochimique et la mécanique. Bien que les
méthodes de séquençage permettent la génération de cartes spatio-temporelles à
l’échelle de la cellule de l’expression génique dans les tissus en développement,
créer des cartes similaires de la mécanique cellulaire en 3D reste un véritable
défi. Exploitant la géométrie semblable à de la mousse des cellules dans les
embryons, nous proposons une méthode informatique robuste de bout en bout
pour inférer des atlas spatiotemporels de forces cellulaires à partir d’images de
microscopie à fluorescence des membranes cellulaires. Notre méthode génère
des maillages 3D précis de la géométrie cellulaire et prédit successivement les
tensions relatives de la surface cellulaire et les pressions dans le tissu. Nous la
validons avec des simulations de mousse en 3D, étudions sa sensibilité au bruit,
et prouvons sa pertinence biologique dans les embryons de souris, d’ascidien et
de C. elegans. L’inférence en 3D nous permet de récupérer des caractéristiques
mécaniques identifiées précédemment, mais en prédit également de nouvelles,
révélant de possibles mécanismes de régulation spatiotemporelle de la mécanique
cellulaire dans les premiers embryons. Notre code est librement disponible et
ouvre la voie à l’élucidation des rétroactions mécano-chimiques inconnues qui
contrôlent la morphogenèse des embryons et des tissus.

https://www.biorxiv.org/content/10.1101/2023.04.12.536641v2.abstract
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3.1 Introduction

Understanding the mechanical regulation of embryo and tissue shape emergence is a long-
standing goal in developmental biology and biological physics. Although gene expression
patterning in early embryos is increasingly documented thanks to recent single cell sequenc-
ing methods [1, 2], we still know very little about how cellular forces are spatio-temporally
patterned within embryos and tissues. This is due to the lack of efficient methods for extract-
ing cell- and time-resolved mechanics in a systematic, tissue-wide, and noninvasive manner.

Most experimental methods to measure mechanics are local and time-consuming, such as mi-
cropipette aspiration, AFM measurement, or embedded droplet deformation [3–15], making
the generation of spatio-temporal maps of mechanics tedious; others are invasive, such as laser
ablation, perturbing normal tissue development [16,17]; or they probe mechanics only at the
tissue level [18–21], ignoring mechanical heterogeneities within the multicellular structure.
Interestingly, all methods require live 3D imaging to follow the deformation of cells, tissues,
or embedded objects. Advances in fluorescence microscopy allow us to record the geometry
of cells during the development of an embryo in toto from the zygote to a few hundreds of
cells with a confocal microscope [22] and up to thousands of cells with a light sheet micro-
scope [23,24]. Attractive new microscopy techniques have emerged to try to quantify cellular
mechanics directly, such as Brillouin microscopy [25,26], or membrane tension probes [27–29],
but such methods still lack cross-validations and remain difficult to link directly to mechanical
models of tissues.

An alternative idea that emerged a decade ago is to infer the forces that dictate the shape of
cells directly from their geometry by solving an inverse mechanical model [30]. These mechan-
ical inference methods (also called force or stress inference) are based only on image analysis
and do not require tissue perturbation: they have therefore a lower entry barrier than many
other methods, as they do not require complex experimental setups. They have been shown
to be efficient in inferring tensions (and pressure) in 2D cell monolayers [31] and can be scaled
to hundreds or thousands of cells. For tissues and embryos, most inference methods are based
on the hypothesis that cells adopt shapes and arrangements similar to bubbles in a foam, as
pointed out by D’Arcy Thompson more than a century ago [?]. This analogy implies that the
mechanics of cells is dominated by tensile stresses on their surface, which are generated by
actomyosin contractility [32]. Because actomyosin contractility may be regulated differentially
in distinct cells or at different interfaces (such as the cell-medium and cell-cell interfaces [5]),
embryos and tissues may be seen as heterogeneous foams, where each cellular interface may
adopt a different tension. Actual inference methods also assume generally a quasistatic me-
chanical equilibrium, where the viscous relaxation of tensions (dozens of seconds) is much
faster than typical developmental timescales (dozens of minutes to hours). This foam-like
mechanical equilibrium underpins two force balances, the Young-Dupré and Young-Laplace
equations (Section 3.2), relating surface tensions with contact angles and cell pressures with
interface curvatures. In the next, we will therefore refer to tension and pressure inference.

First versions of tension inference methods [33, 34] neglected Laplace’s law by assuming
straight cell interfaces, as in traditional vertex models [35, 36]. In addition, they treated
tensions and pressure as independent variables, which made the inverse problem generally
underdetermined and relatively sensitive to noise. Alternatively, segmentation of cell mem-
branes into 2D polygonal lines to explicitly measure their curvature [37,38] allows successive
determinations of tension and pressure and makes the set of equations generally overdeter-
mined. In the particular case where the whole tissue can be imaged with its boundaries -
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as this is generally the case for early embryos - the problem turns out to be systematically
overdetermined. However the generalization of this approach to three dimensions has not
been convincing so far, since high-quality images and a robust segmentation pipeline are re-
quired [39,40]. To avoid such issue, an elegant variational 2D approach was recently proposed
in which cell junctions are fitted by circular arcs to find tensions and pressure [41], taking
advantage of a mapping between a heterogeneous 2D foam and the tiling of the space into
”circular arc polygons”. This tiling falls actually within the class of Möbius diagrams [42,43],
whose mapping to 2D foams was already pointed out mathematically [44]. In 3D however,
interfaces have mean constant curvatures but are generally not portions of sphere and may
adopt saddle-node shapes, as remarked for homogeneous foams already [45]. In contrary to a
recent assumption [46], the generalization to 3D of the variational scheme developed by [41]
with Möbius diagrams is mathematically not correct.

To fill the gap, we propose a robust end-to-end computational method for performing force
inference in three dimensions, starting directly from 3D fluorescence microscopy of cell mem-
branes. Our pipeline follows the 2D approach of [37], where we decouple tension and pressure
inference. It relies particularly on a novel and efficient surface mesh reconstruction method
to precisely quantify cell geometry and our inversion algorithm includes junction length and
interface areas as weights to infer tensions and pressures more robustly. Importantly, we
perform a comprehensive benchmarking of our pipeline using 3D foam-like simulations and
a systematic sensitivity analysis on various tension and pressure inversion formulas. Our
inference pipeline yields convincing results on early embryos of mice, C. elegans and ascid-
ians by recovering known mechanical characteristics and predicting new ones. We provide
an easy-to-install Python software and a comprehensive set of user-friendly 3D visualization
tools.

3.2 Results

Delaunay-watershed algorithm for multimaterial mesh generation

An essential first step is to extract the precise geometry of cells from microscopy images. Voxel-
based segmentation masks are heavy data structures that are not well adapted to measure
geometrical features such as contact angles or mean curvatures. Alternatively, triangle mesh
representations of cell interfaces possess several advantages: they are sparse data structures
that facilitate the retrieval of geometric quantities using a discrete differential formula [48,49].
They are easy to render graphically and form basic elements for computational modeling, such
as vertex models [50,51] or finite element methods [52]. The surface meshes of interest in our
case are triangular, nonmanifold to account for tri-cellular junctions, and multimaterial to
keep track of the identity of each enclosed cell or region (”material”), in the spirit of [53].
Although triangle meshes can be generated by discretizing voxel-based segmentation masks
directly, using marching cube algorithms [54] or more recent methods [55], we found that
previous algorithms introduced large errors in angle measurements in general.

Therefore, we developed a novel algorithm that robustly generates nonmanifold multima-
terial surface meshes from cell segmentation masks1. The first step consists of computing
a Euclidean distance transform map (EDT) [57] from the cell segmentation mask 2, which
represents a smooth topographic map of cell (and image) boundaries (Fig. 3.2a). From the

1in this paper we used either the deep-learning tool cellpose [56] or preexisting segmentation masks
2This EDT map may also be predicted directly from raw fluorescent images by training a convolutional-

neural network [58,59]
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Figure 3.1: 3D force inference procedure and resulting mechanical atlas for a 64 cell
ascidian embryo. a) 3D fluorescence microscopy image (max projection) of a 64-cell Phallusia
mammillata embryo (from [23]). b) Cell segmentation mask in one focal plane of the 3D image.
c) Multicellular surface mesh of cell interfaces. d) Schematic cell doublet illustrating the two force
balances that need to be inverted: the Young-Dupré equation that relates surface tensions γij , γik and
γjk with contact angles αij , αik and αjk, and the Young-Laplace equation that relates cell pressure
difference Pj − Pi with tension γij and the radius of the interface curvature H−1

ij . e) 3D map of
relative surface tensions in the embryo, plotted with a color code from blue (lowest) to red (highest). f)
Pressure map in the embryo, normalized from 0 to 1. g) Exploded view of the surface tension map that
illustrates cell-cell contact tensions within the embryo. h) Force graph representation of the mechanical
atlas, where each node represents a cell with its associated pressure and each edge corresponds to an
interface colored by its tension value. i) 3D stress eigenvalue representation, corresponding to a stress
tensor calculated per cell with the Batchelor formula [47]. Positive eigenvalues are plotted in blue
(compressive stress) while negative are plotted in red (extensile stress).

distance map, we sample points at the extrema of the elevation value using a max-pooling
operator, which serves as control points to generate a Delaunay tessellation of the space (tri-
angulation in 2D or tetrahedralization in 3D). A dual Voronoi diagram is then generated from
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the Delanaunay tessellation and is represented as an edge-weighted graph G = (N , E ,W),
where N is the set of nodes, representing tetrahedra in the dual space (triangles in 2D), E the
set of edges between these nodes and W their associated weights. These weights are defined
here according to the average value of the integrated distance map measured along the cor-
responding triangle (or edge in 2D) in the dual space (Extended data Fig. 2a). Seeding each
region using masks, we partition this graph using a watershed algorithm [60] that separates
the nodes in the graph between the different cells and the external region3. Mapped back on
the dual Delaunay space, this partition defines a unique surface (contour in 2D) mesh that
accurately follows cell boundaries.

Our Delaunay-watershed mesh generation algorithm works just as well in 2D as in 3D (Fig. 3.2a).
Since the main purpose of this mesh generation algorithm is to extract precise geometrical
features, we generated a set of 47 foam-like simulations of embryos with a number of cells
varying from 2 to 11, which we translated into artificial confocal fluorescent images of size
∼ [250× 250× 250] [64] to compare the error generated for different geometrical measures of
interest (contact angles, mean curvature, junction length, area, and volume) by our pipeline
and state-of-the-art surface meshing techniques implemented in CGAL [55]. Our Delaunay-
watershed algorithm [65] outperforms CGAL [55] for the retrieval of contact angles (Fig. 3.2b),
and cell volumes or junction lengths (Extended data Fig. 2b), while its precision is comparable
for the retrieval of interface areas and mean curvatures (Extended data Fig. 2b).

Tension and pressure balance

Once the geometry of the cells can be calculated from the cell segmentation mesh (Extended
data Fig.1 and Supplementary Note), we have to formulate the inverse mechanical problem to
retrieve the relative force of the cells from their geometry. A quasi-static foam-like equilibrium
underpins two stress balance equations within the tissue (Fig. 3.1d). The Young-Laplace
equation

pi − pj = γijHij (3.1)

relates the hydrostatic pressure difference pi − pj between cells of indices4 i and j with the
interface tension γij = ∥γ⃗ij∥ and the interface mean curvature Hij , which is homogeneous
along each interface. The Young-Dupré force balance

γ⃗ij + γ⃗jk + γ⃗ki = 0⃗ (3.2)

states that the sum of vectorial tensions should be zero at each tri-cellular junction line that
joins the interfaces between cells i, j and k. This vectorial sum is equivalent to saying that
tensions are coplanar and form a triangle, which implies the triangle inequality γij <γjk+γki

and equivalent relations by permutation of the indices i, j and k. Non-compliance with one of
these inequalities indicates that tension balance breaks down and predicts generically a topo-
logical transition in the embryo or tissue. The Young-Dupré tension balance can generically
be decomposed into a set of two independent scalar equations that combine the polar angles
between the interfaces αij , αjk and αki (Fig. 3.1d). In the following, we use five different
variants of tension balance that involve cosines and sines of polar angles only [30], which we
named Young-Dupré, Young-Dupré projection, Lami, inverse Lami and Lami logarithm [66]
(see Methods 3.6 and Supplementary Note)

3Other graph partitioning methods such as multicut [61], hierarchical agglomeration [62] or Mutex watershed
[63] algorithms may also be envisioned, although we have not tried them directly.

4by convention the index 0 will refer to the external medium
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Figure 3.2: Multimaterial mesh generation algorithm. a) From a microscopy image (artificial
here) in 2D (resp. 3D), we first generate a distance transform map, including the image boundaries;
we then sample points at the extremum values of this map to generate a Delaunay triangulation (resp.
tetrahedralization) of the 2D (resp. 3D) space; the average integrated elevation value along edges
(resp. triangles) of this tessellation gives weight to edges in the dual Voronoi diagram; a watershed cut
algorithm [60] is applied to this weighted graph to partition nodes into cell and exterior regions, result-
ing in fine in a multimaterial nonmanifold polygonal mesh segmentation (resp. triangle surface mesh)
of the original cell membrane image. b) The geometric precision of our mesh generation algorithm is
benchmarked on foam-like simulations, which are transformed into artificial images to reconstruct sur-
face meshes. Our pipeline reconstructs cell geometry with better precision than state-of-the-art mesh
generation methods, such as CGAL [55], as shown by the comparison of the error in the reconstructed
angles as a function of the original angle. The shaded region measures the standard deviation.

The balance of forces in a foam-like tissue of nc cells can also be derived from the minimization
of surface energy under cell volume constraints. This formulation is particularly adapted to
numerical simulations on a discrete mesh [50, 51] and is based on a Lagrangian function.
Assigning an index m to each existing interface Am between one cell and another or the
external medium, the Lagrangian reads

L =
nm∑

m=1
γmAm −

nc∑
k=1

pk(Vk − V0
k), (3.3)

where γm and Am are, respectively, the surface tension and the area of the interface between
the regions am and bm where {am, bm} ∈ J0, NK2. Vk and V0

k are the current and target volumes
in the cell k, and pk its pressure plays the role of a Lagrange multiplier for volume conservation.
Discretized on a mesh, where areas and volumes are functions of the positions of the nv vertices
{x⃗α}nv

α=1 (Extended data Fig.1 and Supplementary Note), optimality conditions [67] for this
Lagrangian function produce a force balance at each vertex x⃗α:

0⃗ = ∂L
∂x⃗α

=
nm∑

m=1
γm

∂Am

∂x⃗α
−

nc∑
k>1

pk
∂Vk

∂x⃗α
(3.4)

We define Γ = (γ1, γ2, . . . , γnm)T a generalized vector of tensions of size nm, and P =
(p1, p2, . . . , pnc)T a generalized vector of pressures of size nc. Inspired by projection meth-
ods [50] used generically to solve constrained optimization problems, we derive from equation
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(4.6) a linear system of equations whose solutions are - to an arbitrary factor - the tensions and
pressures corresponding to a given heterogeneous foam geometry (see Supplementary Note).
It reads, in matrix form (

GΓ −BP

BΓ −GP

)
×
(

Γ
P

)
= 0, (3.5)

where GΓ,P are symmetric matrices of sizes, respectively n2
m and n2

C and BΓ,P rectangular
matrices of sizes, respectively nm × nC and nC × nm (see Supplementary Note). The linear
system to solve for pressures at given tensions GP×P = BΓΓ is called Variational Laplace
in the next. Because the square matrix GP is full rank and, therefore, invertible (see the
Supplementary Note), we can also write a closed-form linear system for the tensions alone as(
GΓ − BP G−1

P BΓ
)
× Γ = 0, which we call variational Young-Dupré.

3.3 Tension and pressure inference

Tensions depend only on contact angles at trijunctions and are independent of cell pressures,
so here we decompose the inverse problem into two steps, in the same spirit as [37]: first, we
solve the tensions and then determine the cell pressures using inferred tension values. The
advantage of this two-step approach is that tensions can still be inferred in embryos or tissues
under confinement or compression (such as C. elegans), where Laplace’s force balance does not
apply anymore, since the interfaces may adopt non-uniform mean curvatures. Importantly,
tensions (and pressures) are known up to a multiplicative (respectively, an additive) factor.
To remove this indeterminacy, we impose that the average tensions shall be equal to unity,
which adds an equation to the system, and we arbitrarily fix the external pressure to zero.

The tension inference problem can be generically cast into a linear system AΓ × Γ = cΓ,
where AΓ is a matrix of size (nΓ + 1) × nm that collects nΓ + 1 equations that relate the
nm unknown tensions, and cΓ = (0, . . . , 0, nm)T implements the constraint on the average
tensions. This system is overdetermined and is solved in the sense of ordinary least squares
(OLS). Performing a systematic benchmark of our method, we found that better results are
obtained when the nΓ tension equations are weighted by the length of the corresponding
junction (Supplementary Note), which is the choice taken further.
In Fig. 3.3, we compare the sensitivity of our inference algorithm for the different variants
of the Young-Dupré formula (3.6), (3.7), (3.8), and the variational Young-Dupré equation.
By perturbing vertex positions with random noise in mesh solutions of foam-like simulations
(Fig. 3.3a), we calculate and plot the mean square error on the tensions inferred from this
perturbed mesh (Fig. 3.3b). At low noise values, we find that the scalar Young-Dupré equa-
tion gives better results, but this error increases then faster for larger noise. Variational
Yound-Dupré and the different Lami variants have an error that increases faster at low noise,
but then reaches a lower relative plateau at higher noise.

For pressure inference, we follow the same approach, expressing the inverse problem as a linear
system AP ×P = bP , which we solve with the OLS method. Here, we compare the traditional
Laplace formula (3.1) and our new variational Laplace formula (4.10). Interestingly, we find
that our mesh-based variational formula performs systematically better regardless of the level
of noise (Fig. 3.3c).

Error in inference results may originate from deviations of cells shape from the solution of an
heterogeneous foam or from an insufficient image resolution (Extended data Fig. 3c), but they
are also the result of an inevitable intrinsic noise generated by our pipeline that comes from the
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Figure 3.3: In silico validation of the force inference pipeline. a) Sensitivity analysis of
different formulas for tension and pressure inference. Foam-like simulation meshes are perturbed by
randomly displacing each vertex position following a uniform law. b) Plot of the mean square error
on inferred tensions as a function of the intensity of the noise for the different tension formulas. c)
Plot of the absolute error on the inferred pressure as a function of the noise intensity for the Laplace
and variational Laplace formulas. d) Pipeline for benchmarking force inference: from random surface
tensions (visualized here as a symmetrical nc + 1 × nc + 1 matrix) and cell volume values, a dataset
of foam-like embryo meshes is simulated, from which artificial microscopy images are generated; then,
our end-to-end pipeline is applied to regenerate a mesh and infer tension and pressure values. e)
Plot of the relative error in the inferred tensions for the different tension inference formulas applied
to our simulated embryo dataset. f) Relative errors on inferred pressures on our simulated embryo
dataset with Laplace and variational Laplace formulas. g) Self-consistent validation of the inference
on the compaction of the 8-cell mouse embryo. Surface tensions are inferred with the pipeline and
averaged between the cell-medium and cell-cell interfaces. Foam-like simulations are performed using
these tensions and yield an in silico embryo morphology that is compared to the real embryo image.

segmentation and meshing operations. To evaluate which formula may be most adapted given
this minimal and ineluctable level of noise, we generate ideal artificial confocal microscopy
images from mesh results of foam-like simulations (see Supplementary Note). This dataset [64]
is used to benchmark our method: the images are segmented using cellpose [56] and translated
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into multimaterial meshes with our Delaunay-watershed algorithm to ultimately infer tensions
and pressures using the various formulas introduced earlier (Fig. 3.3d). In general, we find
that the systematic error induced intrinsically by our pipeline remains very low, with the
best inference results obtained with the scalar Young-Dupré formula (3.6) and the variational
Laplace formula (Figs. 3.3e-f). For all tension and pressure inference examples shown below,
we therefore systematically use the scalar Young-Dupré and variational Laplace formula.

3.4 Force inference applied to early embryo development

To validate the biological relevance of our novel force inference pipeline, we inferred 3D me-
chanical atlases of mouse and ascidian embryos using fluorescent microscopy images of cell
membranes. We first study the self-consistency of the heterogeneous foam model in compact-
ing 8-cell mouse embryos. Compaction corresponds to the extension of internal cell contacts
that round up the embryo and was shown by micropipette tension measurements [5] to be
characterized by a decrease in the ratio α = γcc

2γcm
- called compaction parameter - where γcm

is the tension at the cell medium interface of cells and γcc the tension at cell-cell contacts.
This single parameter is enough to characterize the embryo shape and is equal to the cosine
of half the contact angle of the cell medium. Using confocal fluorescent images of 8-cell mouse
embryos at successive levels of compaction, we segmented them into multimaterial meshes and
inferred relative tensions. We then performed 3D foam-like simulations and compared them
with the original microscopy images (Fig. 3.3g), and found a very good qualitative agree-
ment. Interestingly, our automatic inference methods yields systematically lower variability
in inferred γcc values than previously obtained by measuring contact angles manually [5], as
illustrated on Fig. 3d. This confirms the relevance of a heterogeneous foam model hypothesis
and exemplifies the capability of our inference pipeline.

To go beyond this example, where cell-medium and cell-cell tensions are uniform within the
embryo, we inferred spatio-temporal mechanical atlases of the early ascidian embryo Phallusia
mammillata. We used fluorescent images of cell membranes that were acquired with a confocal
microscope from the zygote to the 44 cell stage (see Methods) or with a light sheet microscope
from the 64 cell stage to the late neurula (≲ 800 cells) [23]. We first focused on the shape
of the embryo from 16 cells to the early gastrula, where divisions are reported to be asyn-
chronous with cell divisions that alternate between the animal and vegetal hemispheres [68].
Recently, it was shown in P. mammillata embryos at 16, 32 and 44 cell stages, that cells
at mitosis entry have lower apical tension than their interphase counterparts located in the
opposite hemisphere [6]. This striking result, in notable contrast to mitotic cortical stiffen-
ing reported in most somatic cells [69, 70], is again predicted by our force inference method,
which finds a ratio of apical tension between mitotic and interphase cells that is systemat-
ically lower than 1 in the 16 to 32 cell stages (Fig. 3.4e). This mitotic softening alternates
between the animal and vegetal poles, as illustrated also from pressure maps (Extended data
Fig. 4a) further explains the overall 3D shape of the embryo which is flatter on the side of
interphase cells (16 and 32 cells). As one would expect from Laplace’s law, if applied globally
to the embryo approximated to a droplet, a higher apical tension at one pole leads indeed
to its flattening. Inference not only confirms previous results, but also predicts an unknown
switch in the 64-cell embryo, where mitotic blastomeres have higher apical tension than their
interphase neighbors (Fig 4. 3.4e, Extended data Fig. 4a) suggesting that, from this stage on,
cells undergo mitotic stiffening. This mitotic stiffening persists during gastrulation (stage 120
in Fig. 3.4e) and later (Extended data Fig. 4a). This illustrates the predictive power of our
inference pipeline, which reveals novel mechanical features that explain the shape of cells and
embryos.
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Figure 3.4: In vivo validation of the 3D tension inference. a) Illustration of the process of
T1 topological transition when one tension at a junction becomes greater than the sum of the two
others. b)Plot of the percentage of unstable junctions in the embryo (blue) and the ratio of unstable
junction length to total junction length in the embryo as a function of its development stage, defined
by its number of cells. c) Plot of the mean residual of Young-Dupré equations (purple) in the embryo
as a function of its development stage, defined by its number of cells. d) Left Surface tension map of
the 64-cell ascidian embryo. Middle Visualization of the residuals of Young-Dupré equations for each
junction in the same embryo. Right Junctions for which inference predicts a T1 topological transition
are mechanically unstable. Visualization of stable (green) and unstable (red) junctions in a 64-cell
ascidian embryo (P. mammillata). e) Maps of apical tension at the animal and vegetal poles of the
early ascidian embryo (P. mammillata) in the 16AS, 24, 32AS, 64 and 120 cell stages. The ratio of
mitotic to interphase apical tension is colored green if it is less than 1 and red if it is greater than 1.
Mitotic cells are indicated by a white star.

To further assess the validity of our inference method, we searched for locations in the embryo
where the hypothesis of foam-like mechanical equilibrium may break down. An interesting
idea is to look for junctions that are unstable for the predicted tensions. In fact, when
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γij > γjk + γki, we expect the junction ij to be unstable and undergo a T1 topological
transition (Fig. 3.4a). Any unstable junction is therefore the sign of mechanical equilibrium
breakdown that can result either 1) from a too large error in tension inference or 2) from an
inadequacy of the heterogeneous foam model to describe cell arrangement or geometry [71].
In a 64-cell P. mammillata embryo, we found 31 unstable junctions in a total of 569 junc-
tions (Fig. 3.4d). Interestingly, these unstable junctions are detected exclusively close to the
embryo center, where the lengths of the junctions become very small, and segmentation strug-
gles to resolve cell geometry (Fig. 3.4d, Extended data Fig. 4b). In general, the percentage
of unstable junctions predicted by our inference pipeline remains very low, around ≈ 3%,
throughout the development of the ascidian embryo up to late neurula (Fig. 3.4b). This
represents an even lower percentage of unstable junction length, below 1%, which confirms
that the tension equilibrium predicted by our inference pipeline is generally satisfied. To
assess the validity of the inference, it is also useful to visualize the deviation from equilibrium
using the force balance at the junctions (3.2). We therefore propose a visualization of the
residuals ∥AΓ×Γ−cΓ∥2 at each trijunction, as shown in Fig. 3.4c,d and Extended data Fig. 4b.

To further illustrate the capabilities of our inference method, we report three aspects of early
ascidian embryo development brought to light by our mechanical atlases. The early develop-
ment of the ascidian is characterized by its high degree of invariance [23], and a stereotypical
feature of this invariance is the bilateral symmetry of the embryo. However, each embryo
shows a certain degree of geometric variability between its left and right sides, which is well
reflected in the mechanical asymmetry, as illustrated by the (a)symmetry of the tension and
pressure maps inferred in Fig. 3.5a and Extended data Fig. 5a.

The cell fate in the ascidian embryo is also invariant, as has been described for several decades
(reviewed in [23,72]). At the 76-cell stage, the animal hemisphere is composed exclusively of
ectodermal cells, while the vegetal hemisphere is segregated into neural/notochord progenitors
and endoderm or mesoderm germ layers. We find that this patterning of cell fate is reflected
in a remarkable manner in different regions of cell mechanics: ectoderm and endoderm cells
have lower apical tension and lower pressure, while neural plate and mesoderm cells form
very distinct regions of higher apical tension and pressure (Fig. 3.5b). This is probably due
to the different mitotic history of each lineage, since fate specification is accompanied by an
independent cell cycle timing in each specified tissue [23,68]. In the 76-cell stage, neural/no-
tochord and mesoderm cells have, in fact, just undergone cell division (they are in their eighth
cell cycle), while endoderm cells were born more than 40 minutes ago and are in the middle
of interphase, just before they undergo apical constriction [73]. In the neurula stage, apical
constriction has been reported to drive neural tube closure with greater contractility on the
apical side of the nerve cord and brain tissues [74, 75]. Consistent with this, our inference
pipeline predicts on the vegetal side of the embryo at 395, 702 and 758-cell stage a high apical
tension in cells located in the anterior neural plate that are undergoing folding (Fig. 3.5c
arrow in the vegetal pole view, Extended data Fig. 5b). A sagittal section of the embryo at
this stage reveals that the neural tube has more cortical tension than the overlying epidermis
of the underlying endoderm and notochord (Fig. 3.5c sagittal section); this higher tension is
reflected in a stronger accumulation of myosin II in the neural tube compared to other tissues
(Fig. 3.5c, myosin sagittal section and see also [74]).

Finally, we performed tension inference in the early C. elegans embryo from 4 to 15 cells
(Fig. 3.6). Unlike the ascidian and, to a certain extent, mouse embryos, an eggshell strongly
constrains the shape of cells from the zygote stage. This confinement has shown to be an
essential cue controlling early cell arrangement [76, 77] and makes Laplace’s law no longer
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Figure 3.5: Spatiotemporal patterning of mechanics in the ascidian embryo P. mammillata
a) Tension and pressure maps of the animal pole of two 64 cell embryos. Imperfections in the geometric
bilateral symmetry of the embryo are reflected by a corresponding asymmetry in the apical tension and
pressure of the cell. b) Tension and pressure maps at the animal and vegetal poles of a 76-cell embryo
and the corresponding pattern of cell fate in the germ layers. c) Tension maps in late neurula (758
cells) from vegetal, animal, and sagittal views. The white arrows indicate regions of higher tension
(red) within the embryo. Fluorescent microscopy images of myosin II (iMyo) at the vegetal pole and
in the sagittal view: 3D reconstruction (top left) or selective plane projection of 10 confocal planes
(top middle and bottom left). The orientation of the embryo is given by arrows Ant: anterior, Pos:
posterior, Med: medial, Lat: lateral, D: dorsal, V: ventral.

adequate to account for cell pressures, which are directly affected by the mechanical resistance
of the shell. We confirm this characteristic with 3D simulations of a 4 cell embryo confined
within an ellipsoid (Fig. 3.6a), using realistic parameters that we previously measured in
[77]. In this realistic simulation, we show that the mean curvature may be locally perturbed
by the shell along cell-medium interfaces, especially for ABp and EMS blastomeres, which
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Figure 3.6: Force inference in C.elegans embryo. a) Pressure inference on a simulated embryo
confined in a rigid shell. The shell induces deformations in the membrane that lead to spatial changes
in curvatures compared to those of an isolated foam. Both the Laplace and the variational Laplace
formulas are inadequate to infer correct pressures, as illustrated by the table of values. b) Surface
tension can still be inferred, as equilibrium at junctions is still verified.

precludes the use of Laplace’s law, which assumes constant mean curvature interfaces. Indeed,
when we infer pressures with the Laplace or Laplace variational formula on this mesh, we
obtain pressure predictions, which are 20% to 30% different from the actual value in the four
blastomeres (Fig. 3.6a). Therefore, simultaneous tension and pressure inference may not be a
good strategy in this case [40], while breaking down the inference in two successive steps still
allows us to infer tensions independently of cell pressures. Interestingly, we find, in agreement
with the measurements in [77], a lower cell-medium tensions in P2 and EMS cells in the 4-cell
stage C. elegans embryo, and predict a general trend of lower cell-medium cortical tension in
descendants of the P-lineage at subsequent stages of embryo development (Fig. 3.6b).

3.5 Discussion

We presented a robust end-to-end computational pipeline to infer relative surface tensions
and pressures directly from three-dimensional fluorescent images of embryos or tissues. It
is based, in particular, on a novel and fast method for generating surface meshes from cell
segmentation masks, which allows for a more accurate extraction of geometric features than
previous approaches [55]. Therefore, our algorithm is compatible with the latest segmentation
methods [56, 78–80] and can scale to thousands of cells. We also introduced a novel formula
for inferring pressures from a triangle surface mesh, which outperforms the direct inversion
of Laplace’s law. By performing a systematic sensitivity analysis on simulated embryos, we
showed that the classic Young-Dupré formula gives the best tension inference results for mod-
erate noise in the image or in the cell shape. Our pipeline intrinsically achieves maximum
relative force errors of ≈ 10% from images of simulated embryos (Fig. 3.3c and Supplementary
Note). Additionally, we provide several visualization tools to display multicellular morphol-
ogy and forces in multiple ways, including a force graph representation of the cell aggregate
and a 3D map of cellular stress tensors (Figs. 3.1h-i). The residues and predicted topological
changes of inference for each junction in the aggregate can also be directly plotted to enable
local evaluation of the method and/or the active foam hypothesis (Fig. 3.4b,c). Subsequently,
we demonstrated the biological relevance of our approach by generating mechanical atlases of
the early ascidian embryo: our inference method can recover characteristic patterns of apical
tension previously observed [74], including a lower apical tension measured in mitotic cells
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before 64-cell stage [6]. Interestingly, it can also make new predictions and reveal mirroring
patterns of cell mechanics and cell fate in germ layers. Finally, we demonstrate the utility of
decoupling pressure and tension inference by applying our methodology to the early C.elegans
embryo, which develops within a shell.

One forthcoming challenge will be to generate spatio-temporal mechanical atlases of various
embryos. Indeed, a temporal reference is so far missing to calibrate the successive spatial
maps in time. As demonstrated in 2D [77], combining static inference with the temporal
measurement of absolute forces in a single location, or imaging phosphomyosin fluorescence
intensity as a proxy for tension, could become a generic approach to construct temporal at-
lases of absolute mechanical forces, but this needs to be repeated in 3D.

A second challenge will involve the inclusion of junctional mechanics in the form of additional
line tension contributions at the apical surface of cells. Indeed, blastomeres with a contact
to the cell medium acquire generally apico-basal polarity short before the blastula stage in
early embryos. This emergence of apical polarity is generally associated with the formation
of tight junctions and a contractile ring of actomyosin delimiting each apical surface [81, 82],
that is expected to create additional line tensions at tricellular junctions. The question of the
uniqueness of the inverse solution will furthermore arise, since several stable discontinuous
bifurcation states can exist in the presence of line and surface tensions [83,84], which will first
require a in-depth theoretical effort.

A third challenge will consist of generalizing force inference methods to more complex me-
chanical models, such as recent active viscous surface models [52, 83, 85–88], which naturally
generate inhomogeneous and anisotropic surface tensions, as well as possible torques, leading
to more complex shapes and force balance equations. This will be particularly important for
precisely characterizing the mechanics of dividing cells and faster growing organisms, such
as C. elegans, for which the time scales of visco-active relaxation and development may no
longer be well separated. A possible generic avenue to solve these problems may lie in a
fully variational approach, where a mathematical loss between the microscopy images and the
meshes could be constrained by an arbitrary mechanical model to allow direct gradient-based
optimization of its spatio-temporal parameters. Our recent effort to design such an efficient
loss for comparing a mesh and an image may begin to fill this gap [89]. Importantly, the cur-
rent force inference method we introduced will remain a fundamental building block to this
research field, providing already accurate geometric and mechanical maps, which will form an
ideal initial guess to refined but more computationally expensive iterative methods.

With a documented and user-friendly implementation in Python [90], our 3D force inference
method can be easily applied to 3D images of embryos or small tissues undergoing a suffi-
ciently slow development, and can be combined with spatial ”omic” data generated in early
embryos to uncover possible mechanochemical couplings. 3D force inference complements the
growing range of tools available for studying the mechanical properties of tissues in space
and time [25,91,92], and we anticipate that this approach will help elucidate the mechanical
underpinnings of large-scale morphogenetic movements at the cellular level and illuminate
the intricate interplay between chemical signaling and mechanics during development [93–95].
By revealing the developmental forces shaping organisms, our method may open new evo-
devo studies, such as the investigation of the mechanical differences between closely related
phylogenetic neighbors or the understanding of the mechanical aspects contributing to the
divergence of developmental pathways in evolution.
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Data availability

Images and segmentation masks are already available publicly for P. Mammillata embryos on
figshare (≥ 64 cells) [23] and for C. elegans embryos on figshare [22]. The simulated dataset
(artificial images, segmentation masks and tensions/pressures) used to benchmark the method
is available publicly on Zenodo [64]. Additional experimental images of ascidian embryos (<
64 cells) and their segmentation masks used generated this study will be made available on
Zenodo upon publication.

Code availability

The separate source code for mesh reconstruction with Delaunay-watershed will be available
on GitHub [65] upon publication. All other scripts and main code used in this paper will
be available upon publication on GitHub [90] and the version released at publication will be
archived on Zenodo.

3.6 Methods

Variants of Young-Dupré formulas

Starting from the vectorial expression of the Young-Dupré law (3.2) we call its decomposition
simply by Young-Dupré its decomposition with cosines of polar angles:

γij + γjk cos αki + γki cos αjk = 0
γij cos αki + γjk + γki cos αij = 0
γij cos αjk + γjk cos αij + γki = 0 (3.6)

Another set involves both cosines and sines of angles made by vectorial tensions with one
direction chosen arbitrarily choose along a tension vector, and we call it Young-Dupré projec-
tion:

γij + γjk cos αki + γki cos αjk = 0
γjk sin αki − γki sin αjk = 0 (3.7)

Many other mathematically equivalent formulas may in fact be derived from trigonometric
laws applied to the triangle formed by vectorial tensions (see Supplementary Note). Here, we
will also use Lami’s theorem, which derives directly from the law of sines and was proposed
as an alternative formula for tension inference in 2D [41,66]:

γij

sin αij
= γjk

sin αjk
= γki

sin αki
(3.8)

To avoid divergence at small polar angles, it was proposed to consider the same equations
written as γij sin αjk = γjk sin αij , γjk sin αki = γki sin αjk, which we call inverse Lami, or to
consider the logarithm of the equation (3.8), that we call Lami logarithm.

Biological material

The eggs of the ascidian Phallusia mammillata were harvested from animals obtained in
Sète and kept in the laboratory in a tank of natural seawater at 16°C. Egg preparation and
microinjection have been previously described (see detailed protocols in [96], [97]). Eggs
and sperm were collected by dissection. Sperm was activated in pH 9.0 seawater prior to
fertilization (see the detailed protocol in [97]). All imaging experiments were performed at
20°C.

https://figshare.com/projects/Phallusia_mammillata_embryonic_development/64301
https://doi.org/10.6084/m9.figshare.12839315
https://doi.org/10.5281/zenodo.7881017
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Plasma membrane and myosin-II fluorescent labeling

The plasma membrane was imaged using our characterized construct PH::Tomato [97] whereas
Myosin II was imaged using Myosin II intrabody iMyo (called SF9::GFP in Chaigne et al.,
2016, the plasmid pRN3-SF9-GFP is a kind gift from the M.H. Verlhac laboratory). RNAs
coding for PH::Tomato (1 µg.µL-1) and SF9/iMyo::GFP (4 µg.µL-1) were injected in unfer-
tilized Phallusia oocytes that were then fertilized between 2 and 12 hours after injection.

Confocal imaging of Phallusia mammillata embryos

4D confocal imaging was performed at 20 ° C using a Leica TCS SP8 inverted microscope
equipped with hybrid detectors and a 20×/0.8NA water objective lens. A 3D stack was taken
every minute with a pixel size of 1µm x 1µm and a z-step of 1 µm (in order to obtain cubic
voxels). The Phallusia embryos shown in Fig. 4d (and Extended data Fig. 4) from 16 cells
to 32 cells were imaged in the Team ABC laboratory, while embryos from stage 64 cells and
later stages (shown in Fig. 1, Fig. 4, Fig. 5, Ext Fig. 4, Ext Fig. 5) were obtained from a
public dataset of segmented P. mammillata embryos published in [23].

Statistical Analysis

The boxplots (shown in Fig. 3e, Fig. 3f, Ext Fig. 3b) are realized with the default parameters
of the boxplot function of the matplotlib python library. The box center is located at the
median, and its extremities represents the first and third quartiles. The whiskers are located
at Q1 - 1.5*(Q3-Q1) and Q3 + 1.5*(Q3-Q1).
The shaded regions in plots displays the standard deviation (in Fig. 3b, Fig. 3c, Fig. 2b, Ext
Fig. 2b).
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Extended data Fig. 1: Measurement of geometrical quantities on nonmanifold mul-
timaterial triangle surface meshes. a) Contact angles are calculated at each junction
as the mean of dihedral angles in each triplet of triangles that constitutes the junction. A
dihedral angle is computed from the unit normals to the two adjacent triangles. b) Junctions
are lines that separate three different materials or regions (three cells or 2 cells and the cell
medium). Their length can be easily defined and measured with our nonmanifold mesh data
structure. c) Each cell is represented by a bounded volume (a discrete manifold). We can
compute their volumes and areas from our multimaterial mesh data structure with formulas
derived in the Supplementary Note. d) Mean discrete curvatures can be computed using the
cotangent formula (see Supplementary Note).

Bibliography

[1] Charles Gawad, Winston Koh, and Stephen R Quake. Single-cell genome sequencing:
current state of the science. Nature Reviews Genetics, 17(3):175–188, 2016.

[2] Byungjin Hwang, Ji Hyun Lee, and Duhee Bang. Single-cell rna sequencing technologies
and bioinformatics pipelines. Experimental & molecular medicine, 50(8):1–14, 2018.

[3] JMt Mitchison and MM Swann. The mechanical properties of the cell surface. J. exp.
Biol, 31(3):443–460, 1954.

[4] Karine Guevorkian, Marie-Josée Colbert, Mélanie Durth, Sylvie Dufour, and Françoise
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perimental validation of force inference in epithelia from cell to tissue scale. Scientific
reports, 9(1):1–12, 2019.

[39] Jim H Veldhuis, Ahmad Ehsandar, Jean-Léon Mâıtre, Takashi Hiiragi, Simon Cox, and
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Extended data Fig. 3: Inference sensitivity and influence of tensions formulas for
pressure inference. a) Histogram of eigenvalues of the pseudo-inverse matrices used to
infer tensions and pressures for the Young-Dupré, variational Young-Dupré, Laplace and
Variational Laplace formulas, on our simulated embryo dataset. The spread of the histogram
is a measure of the conditioning of the matrix. b) Comparison of the relative error on inferred
pressures obtained on our simulated embryo dataset between Laplace and variational Laplace
formulas. c) Mean relative error on angles reconstruction (left), tension inference (middle)
and pressure inference (right), depending on the refinement of the mesh (in pixels) and the
image size.
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Extended data Fig. 4: Additional validation data of the 3D tension inference. a)
Mitotic softening and stiffening in the 16AS, 24, 32AS, 64 and 120 cell stages of the early
ascidian embryo (P. mammillata). Upper row: sagittal view of inferred apical tension. Middle
and bottow rows: animal and vegetal views of the inferred cell pressures. The ratio of mitotic
to interphase apical tension is colored green if it is less than 1 and red if it is greater than 1.
The orientation of the embryo is given by arrows Ant: anterior, Pos: posterior, Med: medial,
Lat: lateral, V: vegetal, A: animal. b) Vegetal view of stable (green) and unstable (red)
junctions (Left) and tension inference residues (Right) in ascidian embryos (P. mammillata)
at 218, 320, 512 and 702 cell stages. The orientation of the embryo is given by arrows Ant:
anterior, Pos: posterior, Med: medial, Lat: lateral.
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Extended data Fig. 5: Additional tension maps of ascidian P. mammillata gastrula
and neurula. a) Nine examples of apical tension maps of 64 cell gastrula (animal pole).
b) Maps of apical tensions at the animal and vegetal poles of early (Left) and late neurula
ascidian embryos. The orientation of the embryo is given by arrows Ant: anterior, Pos:
posterior, Med: medial, Lat: lateral.



Chapter 4

An Adjoint-State method for
Tension Inference on Heterogeneous
Foams

Written in collaboration with Hervé Turlier.

This work has just been achieved lately and has not been submitted yet.

This project began as my master’s thesis project. The initial idea was to infer the surface
tensions of the embryo from images using machine learning, more precisely graph neural net-
works. However, I rapidly realized that this was not a good approach. I privileged more
classical methods to solve this inverse problem and wrote in my master’s thesis the equations
to solve the adjoint-state method for the doublet. It took me a lot of time to generalize it to
any cell clusters, and it finally worked only at the very end of my Ph.D. Many things were
crucial. First, the simulation engine was greatly enhanced by Nicolas Ecker, and it allows
for faster and less error-prone simulations. Then, the state equations were essential. We
took the variational Young-Dupré equations that came from our previous work. Eventually,
a good SE(3)-invariant norm to compare meshes with each other was important to obtain a
smooth gradient descent. This work is the ultimate frontier of tension inference in foams and
provides a fitting conclusion to my efforts. This method is less straightforward than a simple
mean-square minimization of Young-Dupré equations, but it has greater potential, as it can
be generalized to other physical models more easily.

In this study, we propose a novel approach to solve the inverse problem of surface
tension inference in heterogeneous foams, using an iterative gradient-based non-
linear optimization method. Our methodology is based on the utilization of the
adjoint-state method to compute gradients of the final shape with respect to the
initial surface tensions. We delve into the design and implementation principles of
this method, detailing the development of the state equations, the cost function,
and the optimization procedure. We study in depth their role in enabling efficient
and accurate surface tension inference, and provide results from simple examples
that underscore its potential in pushing forward the state of the art of tension
inference. Eventually, we propose an interesting generalization to line tension
inference, offering a way to measure biological quantities that remain difficult to
measure or infer.
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Chapitre 4

Une méthode d’état adjoint pour l’inférence
de tension sur les mousses hétérogènes
Écrit en collaboration avec Hervé Turlier.

Ce travail vient tout juste d’être achevé récemment et n’a pas encore été soumis.

Ce projet a débuté comme mon projet de thèse de master. L’idée initiale était de déduire les
tensions de surface de l’embryon à partir d’images en utilisant des réseaux de neurones sur
graphes. Après avoir réalisé que ce n’était pas la bonne approche, j’ai privilégié des méthodes
plus classiques pour résoudre ce problème inverse et j’ai écrit dans ma thèse de master les
équations pour résoudre la méthode de l’état adjoint pour le doublet. Il m’a fallu beaucoup de
temps pour la généraliser à n’importe quel amas de cellules, et cela n’a finalement fonctionné
qu’à la toute fin de mon doctorat. Plusieurs éléments étaient cruciaux. D’abord, le moteur de
simulation en 3D a été grandement amélioré par Nicolas Ecker, ce qui permet des simulations
plus rapides et moins sujettes aux erreurs. Ensuite, les équations d’état étaient essentielles.
Nous avons pris les équations variationnelles de Young-Dupré issues de nos travaux précédents.
Finalement, une norme invariante par transformations du groupe Euclidien SE(3) pour com-
parer les maillages entre eux était importante pour regulariser la descente de gradient. Ce
travail est le stade ultime de l’inférence de tension dans les mousses et fournit une conclusion
adéquate à mes efforts. Cette méthode est moins directe qu’une simple minimisation des
carrés moyens des équations de Young-Dupré, mais elle a un plus grand potentiel, car elle
peut être généralisée plus facilement à d’autres modèles physiques.

Dans cette étude, nous proposons une nouvelle approche pour résoudre le problème
inverse de l’inférence de tension de surface dans les mousses hétérogènes, en util-
isant une méthode d’optimisation non linéaire itérative basée une descende de
gradient. Notre méthodologie repose sur l’utilisation de la méthode de l’état ad-
joint pour calculer les gradients de la forme finale par rapport aux tensions de
surface initiales. Nous approfondissons les principes de conception et de mise
en œuvre de cette méthode, en détaillant le développement des équations d’état,
de la fonction de coût et de la procédure d’optimisation. Nous étudions en pro-
fondeur leur rôle pour permettre une inférence de tension de surface efficace et
précise, et fournissons des résultats à partir d’exemples simples qui soulignent son
potentiel pour faire avancer l’état de l’art de l’inférence de tension. Finalement,
nous proposons une généralisation intéressante à l’inférence de tension linéaire,
offrant un moyen de mesurer des quantités biologiques qui restent difficiles à
mesurer ou à déduire.
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4.1 Introduction

The field of foam physics plays a crucial role in the understanding and modeling of various
biological phenomena, specifically to study early embryos and epithelial tissues, in the ab-
sence of an extracellular matrix [1–4]. A key task within this area is tension inference, which
aims at solving an inverse problem to reconstruct the forces that govern the shape of the tissue.

In this domain, a wealth of progress has been made through image-based inference techniques,
both in 2D and 3D [1,4–6]. The typical strategy involves reconstructing the foam using explicit
or dual representation, then inverting mechanical equilibrium equations to extract the surface
tensions of the embryonic interfaces from geometry. Several sets of equilibrium equations exist
to link physical parameters (such as surface tensions γ) with geometrical counterparts [1, 7].
Most of them correspond to variants of the expression of the force balance equilibrium at junc-
tions, named Young-Dupré equations [8,9], that make intervene the angles between junctions.
We recently proposed a new set of equations, called Variational Young-Dupré equations, that
relies on vertices positions [4]. Despite theoretical equivalence, the final result obtained using
these equations differ in practice, because of their sensitivity to the discrete representation
of the geometry. Overall, all these formula depends on the accuracy of the numerical de-
termination of the geometrical quantities that they rely on. Unfortunately, both angles and
overall vertices positions are hard to determine from data, in spite of recent progresses [10,11].

In this study, we reframe the tension inference problem as an optimization procedure of the
distance between a mesh resulting from foam simulation, and the target mesh derived from
data. We utilize the adjoint-state method [12–14] for computing the gradient of a cost func-
tion with respect to input parameters, i.e surface tensions. The cost function’s definition can
be adapted to suit the accuracy of geometrical quantity reconstruction and does not require
direct representation of equilibrium. Our proposed approach affords numerous advantages:
by solving the forward problem, we ensure that the parameters are compatible with real foam
shapes. We can also calculate the corresponding pressures and the stress tensor accurately.
We delve into the inference problem in-depth, demonstrating how a cost function closely for-
mulated to energy can aid in minimizing overall uncertainty in surface tension determination.

Contributions The key contributions of this paper are :

• We propose a novel formulation of state equations for heterogeneous foams compatible
with the adjoint-state method.

• We demonstrate that gradient-based optimization surpasses the previous state of the
art in tension inference, allowing for topology changes if necessary.

• We offer a simple implementation of the Adjoint Method leveraging automatic differen-
tiation.

• We design a principled distance between foam meshes that is SE(3) invariant.

4.2 Adjoint-State Method for Tension Inference

The field of foam physics plays a crucial role in the understanding and modeling of various
biological phenomena, specifically to study epithelial tissues, in the absence of an extracellular
matrix. An heterogeneous foam is a foam with heterogeneous surface tensions γm at each of its
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Simulation

Surface tensions
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Figure 4.1: We retrieve the surface tensions Γ from the an input geometry Ψdata with an iterative
optimization, where at each step, we do a simulation from the current tensions Γ, and compare the
simulation result Ψ∗ to the input geometry Ψdata, with a rigid-body motion invariant loss (SE(3)
invariance). The gradient with respect to Γ is computed using the adjoint-state method.

interfaces, of area Am. It minimizes its total area energy, under the constraint of conservation
of the volume Vk of every individual cells, and is described by the following Lagragian:

L =
nm∑

m=1
γmAm −

nc∑
k=1

pk(Vk − V0
k), (4.1)

Determining the geometry of such an heterogeneous foam requires to take as input the surface
tensions of its interfaces, represented in a vector Γ„ the volumes of its cells V , an input
description of its geometry Ψ, and to returns an output geometry Ψ∗(Γ) than minimizes the
surface energy, according to the Lagrangian. We call this operation solving the forward
problem. The output geometry Ψ∗(Γ) verifies the following state equations:

S(Ψ∗(Γ), Γ) = 0 (4.2)

The classical approach consists of reconstructing the geometry from data Ψdata, and to use
these state equations to recover the physical parameters:

Γdata = min
Γ
∥(S(Ψdata, Γ)∥2 (4.3)

We consider another approach (Fig 4.1), which is to formulate a cost function that depends
on the resulting geometry C(Γ) = l(Ψ∗(Γ)) = D(Ψ∗(Γ), Ψdata), and find the set of parame-
ters Γdata that minimizes this cost function, using an iterative gradient-based optimization of
Γ : Γ 7→ Γ − η

∂C

∂Γ . When the forward problem can be solved in a differentiable manner, the
gradients can be obtained using automatic differentiation. However, in our case the forward
problem is more complicated, as it requires itself an optimization, that includes non differen-
tiable operations.

The adjoint methods aims at computing the gradient of the functional C(Γ) in such difficult
cases, using an intermediate variable Λ called the adjoint-state variable, by computing the
adjoint state equation:

Adjoint-State equation :
(

∂S
∂Ψ

)T

(Ψ∗, Γ)× Λ∗ =
(

∂l

∂Ψ(Ψ∗, Γ)
)T

(4.4)
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Cost function gradient : dC

dΓ (Γ) = −Λ∗T
(

∂S
∂Γ

)
(Ψ∗, Γ) (4.5)

We will use this gradient to up to perform tension inference on active foams. Solving an
inverse problem through an iterative optimization procedure requires several key ingredients:
A simulation engine to find the energy-minimizing geometry Ψ∗(Γ), a set of state equations
S that defines uniquely the equilibrium, and a good formulation of the distance D that allow
for a smooth optimization.

4.3 Mechanical Equilibrium of an Heterogeneous Foam

γ01γ02
γ12γ01

γ02 γ12

γ01γ02
γ12γ01

γ02 γ12

Forward problem: Simulation Inverse Problem: Inference

Surface tensions Surface tensionsGeometry Geometry

Figure 4.2: The simulation is the forward problem, and the inference is the inverse problem.

The mechanical equilibrium of an active foam can be characterized using the previously in-
troduced Lagrangian:

0⃗ = ∂L
∂x⃗α

=
nm∑

m=1
γm

∂Am

∂x⃗α
−

nc∑
k>1

pk
∂Vk

∂x⃗α
(4.6)

We solve the forward problem (Fig 4.2) by doing a gradient-based optimization where at each
step, we compute the gradient of the surface energy, project the displacements to make the
total volume variation orthogonal to the vertex displacements [15]. When converged, we end
up with a surface that minimizes the total area energy under a constraint of conservation of
volumes. We implemented it in Multitracker, [16], a solver that takes into account T1 and
T2 topology transitions of foam dynamics [17], and manages collision detection and various
mesh refinement rountines.

Foam State Equations If we consider the initial mechanical balance ∑nm
m=1 γm

∂Am
∂x⃗α
−∑nc

k>1 pk
∂Vk
∂x⃗α

= 0, this expression makes the pressures intervene, that are themselves a func-
tion of the surface tension and the geometry of the foam. We will eliminate the pressures
from the force-balance, to obtain the set of state equations S({x⃗α(Γ)}, Γ) that depends only
on the surface tension.

To do that, we first rewrite the equilibrium as a product between a huge tensor Q ∈ Rnv×(nm+nc)×3

that contains the derivatives of the areas and volumes with respect to each vertex, and the
matrix Π ∈ Rnm+nc that contains the surface tensions and pressures. The tensor Q can be
conveniently expressed as a matrix of R3 vectors:

Q×Π =



∇x⃗1A1 . . . ∇x⃗1Anm ∇x⃗1V1 . . . ∇x⃗1Vnc

. . . .

. . . .

. . . .

. . . .
∇ ⃗xnv

A1 . . . ∇ ⃗xnv
Anm ∇ ⃗xnv

V1 . . . ∇ ⃗xnv
Vnc





γ1
. . .
γnm

−p1
. . .
−pnc


= 0 (4.7)
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Then we define a matrix R = QT Q. The equality R× Γ = 0, leads to two sets of equations:

∀l ∈ J1 . . . nmK, 0 =
nm∑

m=1
γm

∑
x⃗α

∂Am

∂x⃗α
· ∂Al

∂x⃗α

− nc∑
k=1

pn

∑
x⃗α

∂Vk

∂x⃗α
· ∂Al

∂x⃗α

 (4.8)

∀n ∈ J1 . . . ncK, 0 =
nm∑

m=1
γm

∑
x⃗α

∂Am

∂x⃗α
· ∂Vn

∂x⃗α

− nc∑
k=1

pn

∑
x⃗α

∂Vk

∂x⃗α
· ∂Vn

∂x⃗α

 (4.9)

Matrix Variational Equations We define four matrices, Glm
Γ = ∑⃗

xα

∂Am
∂x⃗α

· ∂Al
∂x⃗α

, Glk
P =∑⃗

xα

∂Vk
∂x⃗α
· ∂Al

∂x⃗α
, Bnm

Γ = ∑
x⃗α

∂Am
∂x⃗α
· ∂Vn

∂x⃗α
, Bnk

P = ∑
x⃗α

∂Vk
∂x⃗α
· ∂Vn

∂x⃗α
, and uses them to reexpress our

equations using the following block matrix:

(
GΓ −GP

BΓ −BP

)
×
(

Γ
P

)
= 0, (4.10)

GΓ,P are matrices of sizes respectively n2
m and nm×nc and BΓ,P rectangular matrices of sizes

respectively nc × nm and n2
c . The linear system to solve for pressures at given tensions is

called Variational Laplace:

BP×P = BΓ × Γ (4.11)

This equation will allow to infer the pressures with a very good precision, once surface tensions
are infered. In the appendix, we demonstrate that the matrix GP is invertible. We can thus
write a closed-form linear system for the tensions alone, that constitutes our state equations,
that we call the Variational Young-Dupré Equations:

S({x⃗α(Γ)}, Γ) =
(
GΓ −GP B−1

P BΓ
)
× Γ = 0 (4.12)

4.4 Implementation of the adjoint method

The implementation of an optimization procedure using the adjoint-state method can be
greatly simplified by using the derivatives provided by automatic differentiation engines used
in deep-learning [18,19]. This way to implement adjoint-state method has already been done
previously [20], and we believe that it constitutes an underestimated approach to compute
gradients that would be impossible to access otherwise.

4.4.1 Gradient-based optimization implementation

First Guess The first guess can be an homogeneous foam, with a surface tension γ = 1
everywhere. A better first guess can be obtained by doing tension inference using a 3D
tension inference pipeline that we previously designed [4]. The algorithm takes as an input an
instance voxel segmentation, that can be easily obtained using convolutional neural networks
(i.e each voxel is assigned a label according to which cell it belongs to). It converts this
segmentation into a multimaterial mesh, uses this mesh to measure angles, and uses these
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angle measurements to invert Young-Dupré equations to infer surface tension. These surface
tensions constitues the first guess of our algorithm, that will be optimized through the iteration
procedure.

4.4.2 Energy landscape and Objective function design

The choice of objective that is minimized can be made using several criterias. It has to be
convex, i.e converge to the real shape, and nondegenerate: If several physical parameters lead
to a very little norm, in practice it will be hard to determine which parameters are concerned,
leading to an uncertainty in the determination of the tension. The distance between two
meshes will consist of the difference of measured geometrical quantities between the current
simulated mesh Ψ = {x1, x2, ..., xn}, and the target mesh Ψdata = {y1, y2, ..., ym}, with n and
m vertices respectively. The most immediate way to compare two meshes is to take a set
of points sampled from the surface of these meshes, and compute a distance based on these
points.

Point-based metrics and Registration The Hausdorff loss [21,22] (also known as Cham-
fer loss) is a distance metric often used for comparing point sets or triangle meshes, particularly
in the field of 3D computer vision [23]. The Hausdorff distance is defined as follows:

DCD(Ψ, Ψdata) = 1
n

∑
x∈X

min
y∈Y
||x− y||22 + 1

m

∑
y∈Y

min
x∈X
||x− y||22 (4.13)

This is an asymmetric bidirectional distance measure where for each point in the first set, it
finds the closest point in the second set and vice versa. The two sums are then averaged to
produce the final distance measure. However, a key issue in comparing meshes is the lack
of Special Euclidean Group SE(3) invariance (consisting of 3D rotations and translations,
Fig 4.3) [24, 25], which means that the position and orientation of the meshes can affect the
Chamfer loss. Hence, to accurately compare the meshes, it is necessary to align (register)
them with respect to each other.

SE(3) Group: Rigid Body Translations & Rotations

Figure 4.3: The Lie SE(3) Group is composed of rigid-body translations and rotations.

The registration process seeks to find the best SE(3) transformation that minimizes the dis-
tance between the point sets. For instance, the registration can be modeled as an optimization
problem:

T ∗ = arg min
T

DCD(T ·Ψ, Ψdata) (4.14)

where T is the transformation matrix and T ∗ is the optimal transformation. The dot denotes
application of the transformation to all points in the set Ψ. Registration is a non-trivial
problem due to its high computational complexity, especially for large triangle meshes, and
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is often be the bottleneck in comparing triangle meshes. We will avoid this cumbersome
procedure by constructing a SE(3) invariant distance.

SE(3) Invariant Losses A good way to construct a SE(3) invariant distance is to mea-
sure geometrical quantities extracted from the two meshes Ψ, Ψdata. It can also consist of
the areas of the cells, the angles between junctions, the length of the junctions. The junc-
tions are a feature that is very hard to reconstruct from data, so comparing their length will
lead to poor results. The angles can be reconstructed fairly well, but the simulation starts
from Young-Dupré relationship, i.e from the measurement of the angles, thus optimizing the
distance between junctional angles leads to a kind of circular reasoning. As areas are well
reconstructed, a loss based on the difference between the area of regions can lead to good
results. For any type of loss, it is important to be careful about the behavior of this distance
close to the equilibrium. We will show that a loss based on the comparison between areas
reproduces the behavior of our model, and thus his landscape share similar properties.

The energy of our model is E = ∑nm
m=1 γmAm. We can write it using vectorial notations

E(Γ, A) = ΓT ·A. E is optimized non linearly under the constraint that the volumes of each
cell is conserved. We represent this constraint using a function G(V ) = 0 where V is a vector
containing the volumes of every cell. Both A and V depends on the final geometry of the
foam, that we call Ψ, and that we represent explicitely with a triangle mesh. Ψ is a minimizer
of the constrained equation:

Ψ∗ = argmin
G(V (Ψ))=0

ΓT ·A(Ψ) (4.15)

If the energy landscape is very flat around a local minimum, it means that ∂E
∂Ψ ≈ 0 for Ψ ≈ Ψ∗.

If so, there is going to be many geometrical configurations, potentially largely different, that
will lead to to very close total energies. In this case, optimizing the system through the for-
ward simulation will be harder.

More importantly, the real system always has an internal level of noise σ that can be due
to perturbations of various nature (thermal, chemical, mechanical). If the real system does
indeed follow our physical model and have a very flat energy landscape, the shape observed
Ψdata can deviate significantly from the energy-minimizing steady-state shape Ψ∗, leading to a
fundamental uncertainty about the forces governing shapes, independently from the precision
of the measurements or inference.

A good design principle can be to choose a loss function D(Ψ, Ψdata) such that if D(Ψ, Ψdata) ≈
0, then the behavior of the loss landscape of the function is the same as the one of the energy.
If so, it will not add more sources of uncertainty than those already present. If the landscape
is flat, then there is an uncertainty on the real physical system, with the presence of so-called
soft modes where changing configurations is very easy, and then tension inference is doomed
from the beginning. If not, then it will no be flat neither for the distance D, so inference will
be possible with a good precision.

We write σ = |E(Ψdata)−E(Ψ∗)|, the level of noise in the system. The configuration observed
Ψdata will not correspond exactly to the configuration of minimal energy Ψ∗, because of the
observation noise sigma. We note E′ = ∂E

∂Ψ and thus have:

E(Ψdata) = E(Ψ∗) + E′(Ψdata −Ψ∗)⇒ Ψdata = Ψ∗ + σ

E′ (4.16)
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Then, if we stop the optimization when the distance reaches a certain error level D(Ψ, Ψdata) ≈
ϵ, we can write

D(Ψ, Ψdata) = 0 + D′(Ψ−Ψdata)⇒ Ψ = Ψdata + ϵ

D′ (4.17)

Combining these two results, we thus end up with a relation between the recovered geometry
Ψ and the optimal one Ψ∗:

Ψ = Ψ∗ + σ

E′ + ϵ

D′ (4.18)

Thus, to avoid having errors with different behaviours, a good design choice would be to
choose D such that ∂E

∂Ψ and ∂D
∂Ψ have a similar form. We choose

DIA(Ψ, Ψdata) = |A(Ψ)−A(Ψdata)| (4.19)

Which has a derivative D′
IA(Ψ, Ψdata) = ∂A

∂Ψ that is very close from the derivative of the energy
E′ = ΓT · ∂A

∂Ψ , and will thus have a similar behaviour during optimization.

Computation of the derivatives We implement the functions S and C in a fully differ-
entiable manner using Pytorch [18]. The partial derivatives involved in the adjoint-method,
∂S
∂Ψ ,

∂S
∂Γ and ∂l

∂Γ can then be obtained with a simple call to the function torch.autograd.functional.jacobian.
Implementing our functions in pytorch also allow for a straightforward GPU parallelization,
which can result in significant benefits in speed when dealing with large meshes.

Parameter update rule We need to choose an update rule of the surface tensions {γm}nm
m=1,

based on the computation of the gradients. We use Adam [26], that is implemented directly
in Pytorch. A simple gradient descent would work, but the adaptative step of Adam is more
convenient close to the solution, and does not need a taylored schedule of reduction of the
learning rate.

4.5 Applications

4.5.1 Test on a foam simulation

The metric that we will use to evaluate the tension inference will be the mean relative tension
error ϵ = 1

nm

∑nm
m=1

|γguess
m −γgt

m |
γgt

m
. In a previous study [4], we designed a benchmark to assess

the results of our inference pipeline. We were able to obtain a mean relative tension error of
10.1% over the example of the benchmark. The goal is our method is to start from our tension
inference, and improve the results using our slow but principled optimization procedure. Due
to the length of the adjoint method, we did not perform this analysis over all the elements
of the benchmark, and just took one example to illustrate the idea. The initial mesh has
nv = 1570 vertices and nf = 3270 faces. We start from the infered tensions using our pre-
vious method, which had a mean relative tension error of ϵ = 11.9%. We did 400 iterations,
during 8 hours 29 minutes, with a mean duration of 76.46s per iteration. We end up with an
error of 6.5%.

This shows that our method is indeed capable of reducing substantially the errors of tension
inference, compared to our previous method, which was already quite precise. However, the
method is quite long, and its use over our previous method, which worked almost on real
time, is only justified on cases where a high amount of precision is key. We believe that for
tension inference, our previous method will remain a good standard.
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Figure 4.4: Our distance DIA allow us to find back the original shapes when T1 topology transitions
are needed. Here the T1 transition is performed during the iteration 36, corresponding to the bump
in the optimization of DIA.

4.5.2 Quadruplet with T1 transition

Now we will demonstrate the polyvalence of our loss DIA by showing that we can recover
the right tensions even when starting from the wrong topology (Fig 4.4). We want to recover
a uniform target foam, starting from a uniform foam. However, the initial configuration of
the cells is such that a T1 transition is needed. The initial mesh has nv = 1640 vertices and
nf = 3360 faces. We do 150 iterations, with a mean duration of 39.2s per iterations, for a
total length of optimization of 1h and 39 minutes.
We see that a topology change happens at the iteration 35, leading to the right cell-cell
contacts. The optimization is able to change the surface tensions in order to do this T1
transition, and then find the right surface tensions by matching the interfacial areas of the
target shape. We end up with a relative error on the tensions ϵ = 1

nm

∑nm
m=1

|γguess
m −γgt

m |
γgt

m
=

2.51%.

4.6 Conclusion

This paper presents a novel approach to surface tension inference through the application of
the adjoint method. While our methodology may appear complex in comparison to exist-
ing tension inference techniques, it offers a remarkable accuracy and a greater potential of
generalization to other physical models than previous methods. We noticed that we could
take advantage of automatic differentiation engine to make implementation simpler, and GPU
parallelization straightforward. Eventually, we propose a principled SE(3) invariant loss that
allow to recover shapes even when topology changes are needed.

Implementing the adjoint method for surface tension inference requires a higher amount of
computation, the optimization procedure being less direct than other force inference meth-
ods [4, 5]. Nevertheless, this approach ensures an accurate match between the simulation



BIBLIOGRAPHY 153

and the biologically observed shape - a guarantee that direct force inference cannot provide.
By solving the forward problem, we ensure that the inferred parameters will result in foam
shapes that closely mirror the observed biological forms when utilized in a simulation. In this
direction, the application of the adjoint method to line tensions (see Appendix B) represents
a crucial breakthrough. For the first time, it will allow for the inference of line tensions in
embryos, with two promising candidates for such analysis: the 16/24 cell stage ascidians and
the 16 cell stage mouse embryos. It is worth noting, however, that the mouse embryos must
be removed from the zona pellucida to prevent potential inaccuracies in force measurements
due to the impact of this surrounding layer on their surface areas.

Despite the adjoint method’s complexity, its unique advantages of accuracy and potential
to measure line tensions creates exciting possibilities. Now, with this powerful tool at their
disposal, it is up to the experimentalists to utilize it, pushing forward our understanding of
the complex mechanics that drive embryogenesis.
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the adjoint method. ACM Transactions On Graphics (TOG), 23(3):449–456, 2004.

[21] Herbert Federer. Geometric measure theory. Springer, 2014.

[22] Frank Morgan. Geometric measure theory: a beginner’s guide. Academic press, 2016.

[23] Nikhila Ravi, Jeremy Reizenstein, David Novotný, Taylor Gordon, Wan-Yen Lo, Justin
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Chapter 5

An artificial microscope to merge
models and data

Written in collaboration with Fabrice Delbary, Matthieu Perez and Hervé Turlier.

This work resulted in a publication available on arRxiv. It is currently extended with the
input of other authors before submission to a journal.

This project started a long time before I began my Ph.D. Fabrice Delbary was developing
a segmentation algorithm based on a Sobolev norm, for which he developed a mathematical
formulation of the Fourier transform of a mesh. An unexpected application of his work was
the possibility to generate artificial microscopy data from meshes. I immediately understood
the potential of this project to train neural networks, as this was what people were doing
in other industries, such as autonomous driving or robotics. There were many aspects that
were required to apply that at scale. First, the algorithm was quite slow, so I worked on the
parallelization on GPU using CUDA, which allowed raising the speed by a factor of x1000.
Then, an important thing was to work on the photorealism of the data, which we achieved by
using realistic physical models of PSFs, and neural style transfer. Eventually, a user-friendly
interface was quite important, and was developed by Matthieu Perez. Another unexpected
application of this work is to use this image renderer to perform differentiable rendering, i.e.,
to fit the geometry and the PSF parameters from real data. In order to do that, I had to
parallelize the computation of the gradient of the Fourier transform on GPU, and to develop
other compute-efficient strategies to lower the computation time of each iteration as much as
possible. This project has thus been developed over at least 5 years and necessitated a lot of
work from 3 people. However, it will allow significant progresses in the field of 3D microscopy
image analysis.

Fluorescence microscopy has become a pivotal technique for imaging biological
objects, but extracting relevant quantitative information from the resulting 3D
fluorescence images remains a complex task. To be able to compare numeri-
cal simulations and real microscopy images, we created alphaMic, an artificial
microscope. This artificial image creator provides a principled methodology to
generate synthetic images, enabling the generation of large, high-quality datasets,
critical for validating computer vision algorithms. Our renderer simulates the 3D
image formation process of fluorescence microscopy by convolving a 3D mesh,
representing the geometry of the biological structure, with a parameterized point
spread function (PSF). The framework uses the Fourier transform (FT) of the 3D
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mesh for efficient computation, while overcoming challenges related to memory
efficiency and numerical precision by adopting a fully differentiable GPU imple-
mentation. We further explore the impact of various PSF models on image quality
and super-resolution methods. Eventually, we develop a differentiable version of
our renderer, called deltaMic. Differentiable rendering permits a mesh-based
reconstruction of complex shapes from artificial and real confocal microscopy
images, a paradigm shift in the analysis of 3D fluorescence microscopy data.
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Chapitre 5

Un microscope artificiel pour fusion-
ner modèles et données
Écrit en collaboration avec Fabrice Delbary, Matthieu Perez et Hervé Turlier.

Ce travail a abouti à une publication disponible sur arXiv. Il est actuellement enrichi par les
contributions d’autres auteurs avant soumission à une revue.

Ce projet a commencé bien avant que je ne commence mon doctorat. Fabrice Delbary
développait un algorithme de segmentation basé sur une norme de Sobolev, pour lequel il
avait élaboré une formulation mathématique de la transformée de Fourier d’un maillage. Une
application inattendue de son travail était la possibilité de générer des données de micro-
scopie artificielle à partir de maillages provenant de simulations. J’ai immédiatement compris
le potentiel de ce projet pour entrâıner des réseaux neuronaux, par analogie avec ce qui se
faisait dans d’autres industries, telles que la conduite autonome ou la robotique. De nombreux
aspects étaient nécessaires pour appliquer cela à grande échelle. Tout d’abord, l’algorithme
était assez lent, donc j’ai travaillé sur la parallélisation sur GPU en utilisant CUDA, ce qui a
permis d’augmenter la vitesse d’un facteur de 1000. Ensuite, un élément important était de
travailler sur le photoréalisme des données, ce que nous avons réalisé en utilisant des modèles
physiques réalistes de PSF, et des algorithmes de transfert de style. Finalement, une interface
simple d’utilisation était assez importante et a été développée par Matthieu Perez. Une autre
application inattendue de ce travail est d’utiliser ce générateur d’images pour effectuer un
rendu différentiable, c’est-à-dire pour ajuster la géométrie et les paramètres du PSF à partir
de données réelles. Pour ce faire, j’ai dû paralléliser le calcul du gradient de la transformée
de Fourier sur GPU, et développer d’autres stratégies pour réduire autant que possible le
temps de calcul de chaque itération. Ce projet a donc été développé sur au moins 5 ans et a
nécessité beaucoup de travail de la part de 3 personnes. Cependant, il permettra des progrès
significatifs dans le domaine de l’analyse d’images de microscopie 3D.

La microscopie à fluorescence est devenue une technique essentielle pour l’imagerie
d’objets biologiques, mais l’extraction d’informations quantitatives pertinentes à
partir des images de fluorescence 3D qui en résultent reste une tâche complexe.
Pour pouvoir comparer les simulations numériques et les images de microscopie
réelles, nous avons créé alphaMic, un microscope artificiel. Ce créateur d’images
artificielles fournit une méthodologie fondée sur des principes physiques pour
générer des images synthétiques, permettant la génération de jeux de données
volumineux et de haute qualité, essentiels pour valider les algorithmes de vi-
sion par ordinateur. Notre moteur simule le processus de formation d’image
3D en microscopie à fluorescence en convoluant un maillage 3D, représentant la
géométrie de la structure biologique, avec une réponse impulsionnelle spatiale
(PSF) paramétrisée. Nous utilisons la transformée de Fourier (FT) du mail-
lage 3D pour un calcul efficace, tout en surmontant les défis liés à l’efficacité de
la mémoire et à la précision numérique en adoptant une mise en œuvre GPU
entièrement différentiable. Nous explorons en outre l’impact de divers modèles
de PSF sur la qualité de l’image et les méthodes de super-résolution. Finalement,
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nous développons une version différentiable de notre moteur, appelée deltaMic.
Le rendu différentiable permet une reconstruction basée sur un maillage de formes
complexes à partir d’images de microscopie confocale artificielles et réelles, ou-
vrant des possibilités nouvelles pour l’analyse des données de microscopie à fluo-
rescence 3D.
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5.1 Introduction

Fluorescence microscopy [1] has become the most prevalent technique for imaging biological
objects. In this method, biological samples are made visible by attaching a fluorescent dye, or
fluorophore, to the structure of interest. A laser excites the dye, which subsequently emits flu-
orescent light that travels through the microscope’s optics and is detected by a photosensitive
sensor to produce a 2-dimensional image. In confocal microscopy, the focal plane is adjusted
to generate a 3D volumetric image composed of optical sections of the biological sample.

Despite the widespread use of fluorescence microscopy in biology, extracting relevant quan-
titative information from 3D fluorescence images remains a significant challenge, prompting
the development of new methods. In recent years, researchers have drawn inspiration from
the field of computer vision, building on the success of 2D convolutional neural networks
(CNN) and adapting their architectures to the peculiarities of biological images [2, 3]. These
deep learning (DL)-based tools for fluorescence imaging [4] have enabled the performance and
automation of various image analysis tasks, such as image restoration [5], instance segmenta-
tion [6, 7], and feature encoding with self-supervised learning [8].

To address the challenge of extracting relevant quantitative information from 3D fluorescence
images, we have developed an artificial image creator that offers a principled approach to
generating artificial images and proposes routines for generating corresponding annotations.
The benefits of a principled method for creating artificial images are numerous, as it en-
ables the generation of large, high-quality datasets with a wide variety of biological structures
and imaging conditions, which are essential for validating computer vision algorithms with
ground-truth data. Furthermore, in the context of deep learning, generating datasets of arti-
ficial images with corresponding labels simplifies the training process by eliminating the need
for manual annotation, which can be time-consuming and error-prone. This allows researchers
to focus on developing and refining deep learning algorithms tailored to specific biological ap-
plications, rather than expending resources on data collection and annotation.

The capability to generate artificial images paves the way for a more comprehensive under-
standing of the impact of PSFs on image quality and the effectiveness of super-resolution
methods. We review various point spread function (PSF) models, generate artificial images
using these PSF models, and directly compare and evaluate their impact on the generated
images. This comparative approach not only illuminates the strengths and limitations of each
PSF model but also identifies areas for potential improvement.

Our renderer is built on an efficient and flexible framework that approximates the image for-
mation process by taking a mesh and a parameterized Point Spread Function (PSF) as inputs
and generating a volumetric image from them. To create this 3D image, the mesh describing
the geometry is convolved with the PSF through an element-wise product in the Fourier do-
main. We employ distribution theory to express the Fourier Transform (FT) of a 2D shape
embedded in 3D [9,10] and derive the expression of the FT and its gradient for a triangle mesh.

We also demonstrate the application of our renderer for the inverse procedure: Differentiable
rendering, wherein we use our image formation model to learn both the geometry and the
PSF from the images.

Main contributions:

• We propose a simplified model of the fluorescence microscopy imaging process, com-
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bining a mesh description of object geometry and a simple parameterized point spread
function.

• We introduce a method to generate photorealistic artificial datasets of early embryos.

• We utilize our renderer to illustrate the effects of different PSFs, following classical
models.

• We present a differentiable formulation of the Fourier transform of a triangle surface
mesh, along with its highly-optimized GPU implementation.

• We demonstrate the capacity of our differentiable renderer to reconstruct shapes from
both artificial and real 3D microscopy images without the need for additional shape-
regularization terms.

5.1.1 Related works

Point spread function models

The resolution of images seen with a fluorescence microscope are fundamentally limited by
the diffraction of light [11]. If this response is invariant by translation, we can describe the
imaging system by determining its PSF, that describes the response of the imaging system to
a point source. Numerous physics-based models of PSFs have been developed [12–16], mostly
for deconvolution applications [17].

Given an image uα, deconvoluting a signal aims at inverting the effects of this diffraction, by
finding the solution uρ of the equation uρ ⋆ h + ξ = uα, where ξ is a noise term, which usually
follows poisson statistics [18]. A good deconvolution thus requires an accurate determination
of the PSF.

The most straightforward way to determine a PSF is to directly generate microscopy images
of tiny fluorescent beads that approximates a point source, and then fit the parameters of a
given model to match this experimental PSF. In our approach, we decide to approximate the
PSF by a Gaussian kernel, that is fully characterized by its covariance matrix. We note that
our approach may be extended to learn parameters of more realistic PSF models, especially
when vectorized implementations are available [19].

Gibson-Lanni model [12] is based on an optical theory of the diffraction of light [13], and
has been used successfully to fit experimental data [20]. Recent works [19] provide efficient
implementations based on a decomposition of integrals with Bessel functions that can be
integrated directly in a differentiable pipeline. Another approach, applied in [14–16, 21], is
based on the fact that the Fourier transform of the PSF can be described by the pupil function,
a 2D function defined in the 2D unit disk. An orthogonal decomposition of the pupil function
thus provides a flexible way to describe the PSF. In our approach, we decide to express the
PSF as a Gaussian blur.

Artificial microscopy images generation

Creating artificial microscopy images has been the object of several studies, in order to evalu-
ate image-analysis algorithms [22] and to create automatically annotated datasets for neural
network training [23]. These works can be grouped into two families, with models that aims
at reproducing the real image-formation process [24], and other approaches that uses texture
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synthesis [25,26] or generative DL [27,28] to make photorealistic images.

In [24], fluorophore distribution is defined via a boolean mask that indicates the presence or
absence of fluorophores. This mask is subsequently convolved with a PSF provided by the user
before adding camera noise. We follow and extend this approach, by giving a more accurate
mathematical definition of the fluorophore density, that we define as a R3-valued density.

Instance segmentation of fluorescent images

Biological image analysis is a subdomain of the broader field of computer vision, and state of
the art segmentation methods in both fields followed the same historical evolution [29]: thresh-
olding, watershed-transform [30–32] or optimization with graph-cuts [33] were the dominant
segmentation techniques before the advent of deep-learning based pipelines [2, 3].

In 2D, the best results for the segmentation of biological objects have been obtained by
using a large dataset of annotated images from varied sources to train a CNN to predict
instance masks robustly and generically, being not bound to any particular biological samples
nor imaging modalities [?, 7, 34]. Such approach could not yet be successfully reproduced in
3D, showing that DL-based volumetric data analysis is not just about extending 2D neural
networks to 3D. 3D images, or Z-stacks, are obtained by stacking together 2D images by
changing the position of the focal plane along the optical axis z, leading to large anisotropy
along this spatial direction. This anisotropy is different for each imaging condition, leading
to heterogeneous 3D datasets and making both the training and generalization of CNNs a
daunting task. Limited GPU memory also poses large technical difficulties with current 3D
biology images of typical size from 5123 with a classical confocal microscope to 20483 with
latest light-sheet technologies.

Energy based segmentation

A large portion of the classical literature on image segmentation relies on the minimization
of an energy functional E(Λ, m), that aims at modeling a distance between a desired shape
Λ and a distinctive feature in the image m [35]. These features may be a sharp intensity
gradient (using edge detectors [36]) or regions of largely different intensities [37]. To model
the shape of objects, one can generally rely either on an implicit level-set or explicit mesh
representation. The final shape Λ∗ is obtained iteratively by gradient-based optimization of
the functional. The opposite of the gradient ∂E(Λ, m)

∂Λ may be interpreted as a force that
moves the contour to the desired target shape, which has motivated the generic names of
snakes, active contours [38] or active meshes [39–41] for such methods. One large drawbacks,
it that these techniques most often require user-defined shape regularization terms (mechan-
ically equivalent to global tension or bending energies) to penalize sharp features and obtain
smooth shapes.

The peculiarity of fluorescent images of slender biological structures, such as membranes or
filaments, is that the shape is defined by a thin region of high intensity immersed in the dark,
which is not well-adapted for region-based or edge-based energies evoked earlier. Alternative
approaches have directly defined a force based on the distance to the local maximum intensity
in the image [40, 42]. Others have defined a proper energy functional as a distance between
a microscopy image and an artificial image created from a mesh, as in [43, 44]. The artificial
image is generated by creating a thin boolean mask from the mesh, that is then convolved
with a PSF, that is assumed to be known. Our approach builds on these ideas but proposes a
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more rigorous, versatile and three-dimensional image rendering procedure, where we optimize
both the mesh representing the shape and the PSF parameters together, without needing any
explicit regularization terms to smooth the mesh.

Differentiable rendering

Rendering geometrical 2D or 3D shapes into raster (discrete) 2D images is an ubiquitous
topic in computer graphics, and an increasing number of rendering frameworks are now made
differentiable. This allows to solve inverse-rendering problems, where one can learn directly
the parameters of a scene (shapes, textures, material properties) from single or multiple views
of raster images [45–47]. In most cases, rasterization pipelines are not differentiable natively
and discontinuities or occlusions can lead to incorrect gradients. A simple solution to soften
sharp changes is to smoothen the image formation process with different strategies [48–51].

Our fluorescence microscope renderer is based on mathematical operations that are differ-
entiable by design, and does not need special adaptations to obtain meaningful gradients.
Indeed, convoluting the mesh FT with a PSF naturally smoothes the image, in a similar man-
ner as what is done for differentiable rasterization [49]. As for other frameworks, the number of
parameters to optimize can be very high: a triangle mesh contains typically thousands of ver-
tices, and a PSF may be parametrized by hundreds of parameters. Assuming all the building
blocks of the models are composed of differentiable operations, reverse-mode differentiation
(also called backpropagation), based on the repeated use of the chain-rule, allows to compute
efficiently partial derivatives with respect to any parameter. The efficiency and versatility of
this method lead to the development of several libraries offering both GPU acceleration of
classical automatic differentiation operations [52, 53] and a high level and memory efficient
implementation of backpropagation. We built our pipeline in PyTorch [52] and provide our
mesh FT as a differentiable function.

5.2 Rendering of microscopy images

5.2.1 Rendering fluorescence microscopy images

Images are defined as intensity maps from [0, 1]3 to R without any loss of generality, as any
non-cubic images can be linearly fitted in the cube [0, 1]3. In the following, we will offer
approximated descriptions of both the imaging system and the geometry of the biological
samples, that will be combined to build our differentiable renderer.

Translation-invariant rendering model

Figure 5.1: Principle of the rendering process. In our model, the fluorophores are distributed regularly
on a surface Λ and the imaging system has a translation-invariant response function defined by the PSF.
The microscopy image is created by convoluting the PSF with this uniform distribution of fluorophores.
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We assume translation-invariance of the response function h of the fluorescence microscope.
If so, a smooth image uα : [0, 1]3 7→ R results from the convolution between a density of
fluorophores uΛ : [0, 1]3 7→ R and a point spread function kernel h : [0, 1]3 7→ R:

uα(p) = (uρ ∗ h)(p) =
∫

[0,1]3
uΛ(x)h(p− x)d3x. (5.1)

To avoid the computation of these integrals, we perform the convolution in the Fourier space
by doing an element-wise multiplication of the elements of the Fourier transforms ûρ and ĥ:

ûα = ûΛ · ĥ. (5.2)

The biological structure of interest is made visible by fluorophores. The shape will thus be
represented by uΛ, whereas h should describe the response of the optical system to a point
source (the PSF). Later for differentiable rendering applications, we will see that with this
image formation model, one can start from a first guess

(
u0

Λ, h0), and minimize the distance
between the rendered image u0

α and a real microscopy image m. Doing so allows to learn both
the geometry of the biological sample observed and the PSF of the imaging system, (u∗

Λ, h∗).
However, to learn meaningful representations, both of these elements have to be constrained
by parametrized models that will implement our prior knowledge of the system.

5.2.2 Geometrical models of biological objects

Extracting geometry from volumetric images consists of giving approximate representations
of biological objects in terms of ND (N = 0,1,2,3) discrete objects, embedded in a 3D space.
They can be pretty diverse, both in terms of size and of topology. Here, we decide to focus on
the lipid membranes that delimits cells and nuclei and to approximate them as 2D surfaces,
that can be modeled efficiently with triangle meshes. Choosing the topology in such manner
also implements prior knowledge: as we see in section 5.6.1, early embryos are composed of
cells forming bounded regions that can be represented as a single non-manifold multimaterial
mesh [54].

Figure 5.2: We can interpret each biological object as a geometrical object.

They are pretty diverse, both in terms of size and of topology. In the scales studied, one could
consider doing the following approximations:

• Proteins are seen as 0D points, as the resolution is not sufficient to see individual
molecules.

• Cytoskeletons of cells, composed of actin filaments and microtubules, can be approx-
imated by networks of 1D polygonal curves.

• Lipid membranes that delimits cells and nuclei are 2D, and can be modeled efficiently
with triangle meshes.
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• Bulk 3D organelles such as nuclei or phase-separated liquid droplets are described as
3D volumetric meshes.

5.2.3 Fourier Transform of Surfaces

In this section, we will give an explicit expression of the FT for any 2D surfaces embedded
in R3, and give formulas of the FT and its gradient with respect to vertices position in the
particular case of a triangle mesh.

Surfaces as spatial Dirac distributions

Figure 5.3: Surface Λ describing a dividing cell and its associated density uΛ in R3.

The density of fluorophores uΛ will be equal to 1 only on an infinitely thin surface Λ, and 0
everywhere else.
To describe such irregular functions, one has to define them using spatial Dirac distributions.
If we consider a surface given by a parameterization Λ : [0, 1]2 → [0, 1]3, its spatial density is
given by:

uΛ = 1
|Λ|

∫ 1

0

∫ 1

0
δΛ(x, y)aΛ(x, y)dxdy, (5.3)

where aΛ is the surface element given by aΛ(x, y) = ∥∂xΛ× ∂yΛ∥, and |Λ| is the total area of
the surface Λ. The normalization by the total area ensures a density 1. When dealing with
several surfaces of different densities, one has only to use a weigthed sum of such uΛ.
For all z ∈ R3, the FT of the Dirac distribution at z is given by:

δ̂z(ξ) = e−iz·ξ, ξ ∈ R3. (5.4)

Hence, the linearity of the FT gives:

ûΛ(ξ) = 1
|Λ|

∫ 1

0

∫ 1

0
aΛ(x, y)e−iΛ(x,y)·ξdxdy. (5.5)

The case of a triangulated surface

To describe surfaces Λ in practice, we will use triangle meshes. To compute the FT in this
special case, as the FT is linear we just need to compute the FT of each triangle of the surface
and sum their contributions.

Fourier transform and gradients for a triangle

We consider one triangle T given by its vertices (v1, v2, v3) and compute uΛ and its spatial
derivatives. We denote by v4 = v1 and similarly by v0 = v3. For p = 1 . . . 3, we define
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Figure 5.4: Notations for a triangle mesh. As the FT is linear, the FT of a single triangle will allow
us to obtain the general expression of the FT for any triangle mesh.

p− = p − 1 and p+ = p + 1 and denote by ep = vp−−vp+ the opposite edge to vp and by

lp = |ep| its length. AT = |e3 × e1|
2 denotes the area of the triangle, and NT denotes its

unit normal given by: NT = e3 × e1
2AT

At last, for p = 1 . . . 3, we define wp = ep ×NT , the

non-normalized outward normal to T on the edge ep. For any p, we have: ∂AT
∂vp

= −wp

2
If we define ûT (ξ) =

∫
T e−iz·ξds(z), then for all ξ ∈ R3, we have:

ûT (ξ) = 2AT fT (ξ), (5.6)

with fT (ξ) defined by:

fT (ξ) =
3∑

p=1

e−izp·ξ

(ep− · ξ)(ep+ · ξ) . (5.7)

For all p = 1 . . . 3, we have:

∂ûT
∂vp

(ξ) = −fT (ξ)wp + 2AT
∂fT (ξ)

∂vp
, (5.8)

with:

∂fT (ξ)
∂vp

=ξ

[
e−izp+ ·ξ

(vp− · ξ)2(vp · ξ) −
e−izp− ·ξ

(vp · ξ)(vp+ · ξ)2

− ie−izp·ξ

(vp− · ξ)(vp+ · ξ) + e−izp·ξ

(vp− · ξ)2(vp+ · ξ)

− e−izp·ξ

(vp− · ξ)(vp+ · ξ)2

]
.

(5.9)

∂fT (ξ)
∂vp

=
[(
− i

(vp− ·ξ)(vp+ ·ξ) + 1
(vp− ·ξ)2(vp+ ·ξ)

− 1
(vp− ·ξ)(vp+ ·ξ)2 e−izp·ξ

)
+ e−izp+ ·ξ

(vp− · ξ)2(vp · ξ) −
e−izp− ·ξ

(vp · ξ)(vp+ · ξ)2

]
ξ.

(5.10)

∂fT (ξ)
∂vp

= ξ

[
e

−iz
p+ ·ξ

(vp− ·ξ)2(vp·ξ) −
e

−iz
p− ·ξ

(vp·ξ)(vp+ ·ξ)2

− ie−izp·ξ

(vp− ·ξ)(vp+ ·ξ) + e−izp·ξ

(vp− ·ξ)2(vp+ ·ξ) −
e−izp·ξ

(vp− ·ξ)(vp+ ·ξ)2

] (5.11)
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Density for a triangle mesh

A triangle mesh is a surface Λ = {T } defined by a set of triangles. For ξ ∈ R3, by linearity,
its FT is defined by:

ûΛ(ξ) =

∑
T ∈Λ

ûT (ξ)

|Λ| =

∑
T ∈Λ

ûT (ξ)∑
T ∈Λ

AT
. (5.12)

The gradient of the FT with respect to a vertex v of the mesh is thus:

∂ûΛ(ξ)
∂v = 1

|Λ|

( ∑
T ∈v⋆

∂ûT (ξ)
∂v − ûΛ(ξ)

∑
T ∈v⋆

∂AT
∂v

)
, (5.13)

where v⋆ denotes the set of the triangles of Λ that contains the vertex v.

Numerical approximations to avoid divergence

The FT of a Dirac distribution on a triangle is C∞. However, large computational errors may
arise when one denominator in the eq. (5.6) get close to zero. Error in rounding floating-
point arithmetic leads to a limited numerical precision ϵ. Values smaller than this threshold
ϵ cannot, in practice, be distinguished from 0. Therefore, when one term in denominator gets
close to 0 in the expression (5.6) we replace it by an approximation that we describe in the
following.
We write fT (ξ) = g(e1 · ξ, e2 · ξ, e3 · ξ), with the function g defined for (s, t, u) ∈ R3 by

g(s, t, u)= − eis

(s−t)(s−u)−
eit

(t−u)(t−s)−
eiu

(u−s)(u−t) . (5.14)

When two values (a, b) among (s, t, u) are such that |a− b| < ϵ, we obtain a value equal to 0
at the denominator and divergence. We solve this problem by deriving exact expressions of
g(s,t,u) in the case where t=u or t=s or u=s or u=s=t, that replaces the original expression
(5.14) when any (a, b) among (s, t, u) is such that |a− b| < ϵ.
When only two values are too close from each other:

g(t, t, u) = g(u, t, t) = g(t, u, t)

= i
e−it

t− u
+ e−it

(t− u)2 −
e−iu

(t− u)2 .
(5.15)

When all three values are too close to each other, we replace the expression by

g(u, u, u) = e−iu

2 . (5.16)

5.3 Point Spread-Functions Models

We provide a short introduction of three PSF models: the gaussian PSF, and two photorealis-
tic models: Gibson-Lanni and the Pupil-function based PSF. When formulated appropriately,
they all lead to efficient differentiable expressions of the psf, allowing to learn the physical
quantities that defines them.
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5.3.1 Gaussian PSF

The simplest model is a gaussian PSF. In this case the PSF is fully described by its covariance
matrix Σ ∈n∗n:

h(z) = e− 1
2 zT Σ−1z√

(2π)n det Σ
, z ∈n (5.17)

The Fourier transform ĥ of h is given by:

ĥ(ξ) = e− 1
2 ξT Σ−1ξ, ξ ∈n (5.18)

.
In this framework, learning the PSF consists of learning all the coefficients of the covariance
matrix Σ. This is the PSF with the most previsible behavior, that will not give rise to any
unexpected artifacts, and will be the one favored in a first approach.

5.3.2 Gibson and Lanni model

The optical model

The Gibson Lanni model [12] is based on the hypothesis that the objective lens is completely
free of aberrations. Thus, all the aberrations of the imaging system are generated by the other
elements of the microscope: the specimen, the coverslip, and the immersion medium. In the
optimal design conditions, the specimen is supposed to be in contact with the coverslip, which
is not the case in practice. Moreover, the width and refraction indices of the coverslip and the
immersion medium may differ from their original design values. Because of these differences,
the optical path of a light ray in a design system will differ from one in the experimental
condition. If we note ρ the normalized radius of the focal plane, z the axial coordinate of
the focal plane, and p = (NA, n, t) with n = (ni, n∗

i , ng, n∗
g, ns) and t = (ti, t∗

i , tg, t∗
g, zp), the

optical path difference OPD is given by:

OPD(ρ, z, p) = (z + ti)
√

(ni)2 − (NAρ)2+
zp

√
n2

s − (NAρ)2 − t∗
i

√
n∗2

i − (NAρ)2+
tg

√
n2

g − (NAρ)2 − t∗
g

√
n∗2

g − (NAρ)2
(5.19)

Figure 5.5: Even with an aberration-free objective lens, differences between design and experiment
parameters can lead to optical aberrations, that induces modifications of the PSF
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Expression of the PSF

Under the previous hypotheses, the phase aberration can be expressed as W (ρ, z, p) =
kOPD(ρ, z, p) with k = 2π/λ the wave number of the emitted light.
The PSF is radially symmetric in a plane orthogonal to the optical axis. Given the phase
aberration, we can obtain its expression using Kirchhoff’s diffraction integral formula [12,55]

PSF (r, ρ, z, p) =
∣∣∣∣∫ 1

0
eiW (ρ,z,p)J0(krNAρ)ρdρ

∣∣∣∣2 (5.20)

Where r is the distance to the optical axis, and J0 is the Bessel function of the first kind of
order 0.

Figure 5.6: XZ values of the Gibson-Lanni PSF

We will see that this model gives a PSF that is very similar to the one computed from the
pupil function, with standard parameters. However, in both models, modifying the optical
parameters can change considerably the PSF.

Fast vectorial computation of the PSF

The previous integral is tedious to compute, and has been the object of many studies. We
follow the approach of [19], that allows for a fast computation of the PSF using a Bessel-series
approximation. The vectorial nature of the computation is easily expressed in PyTorch, and
its derivatives obtained straightforwardly using reverse-mode differentiation.

5.3.3 Pupil-function based model

The OTF and the pupil function

Figure 5.7: The 2D-valued pupil function can be used to generate the PSF, and its fourier transform,
the OTF

The PSF specifies the response of the imaging system to a point source object in the physical
space R3. It always depends on the optical properties of the system such as the aperture angle
α, the wavelength of the observation light λ or the refractive index of the immersion medium
n.
The PSF can be described equivalently in the space of spatial frequencies (kx, ky, kz) by its
Fourier transform, called the Optical Transfer Function (OTF). On a fluorescence microscope,
the OTF has non-zero values only on a spherical cap of radius n

λ , with an angular span fixed by
the aperture angle α. This 2D shell can be projected on the plane (kx, ky), by parametrizing
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kz =
√

(n
λ )2 − (k2

x + k2
y), leading to a complex R2 valued function non-zero only on the unit

disc, called the pupil function P (kx, ky). Eventually, the PSF can be described as:

PSF (x, y, z) =
∣∣∣∣∫ ∫

pupil
P (kx, ky)e2πi(kxx+kyy+kzz)dkxdky

∣∣∣∣ (5.21)

The PSF can thus be described via a 2D pupil function defined on a disk. An efficient
parametrization of this pupil function can be done by decomposing it into its expansion in
the orthogonal basis of Zernike polynomials.

Zernike Polynomials

Zernike Polynomials are a sequence of polynomials orthogonals on the unit disk, that are used
to represent optical aberrations [55]. There are odd and even Zernike polynomials. With φ
the azimutal angle and ρ the radial distance, the even polynomials have for expression:

Zm
n (ρ, φ) = Rm

n (ρ) cos(m φ) (5.22)

and the odd ones have for expression:

Z−m
n (ρ, φ) = Rm

n (ρ) sin(m φ), (5.23)

where m and n are nonnegative integers with 0 ⩽ m ⩽ n (m = 0 for even Zernike polynomials),
and Rm

n are the radial polynomials defined by:

Rm
n (ρ) =

n−m
2∑

k=0
(−1)k

(
n− k

k

)(
n− 2k

n−m
2 − k

)
ρn−2k. (5.24)

Each coefficient of the expansion can be learned efficiently. A strengh of this formulation is
that Zernike polynomials represent classical optical aberrations (Fig. 5.8), giving insights into
the real optical properties of the system.

Figure 5.8: Zernike Polynomials are othogonal polynomials in the unit disc that can describe optical
aberrations by modifying the pupil function

5.3.4 Confocal Microscopy PSFs

To model the point spread function (PSF) of a confocal microscope, we reproduce all the
steps involved in the image-formation process.

• Excitation PSF: The excitation PSF (PSFexc) represents the intensity distribution
of the focused light used to illuminate the sample. It is typically modeled as an Airy
pattern, which is the diffraction pattern created by a circular aperture. We can use the
previous PSF model based on a pupil function.
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• Detection PSF: The detection PSF (PSFdet) represents the intensity distribution of
the emitted fluorescence light that is focused onto the detector. It is also typically
modeled as an Airy pattern, similar to the excitation PSF, we will thus also use the
PSF model based on a pupil function.

• Total PSF: The total PSF (PSFtotal) is obtained by multiplying the excitation and
detection PSFs:

PSFtotal = PSFexc × PSFdet.

• Pinhole function: The pinhole in a confocal microscope serves to block out-of-focus
light and improve the axial resolution. The function representing the pinhole (Fpinhole)
is typically modeled as a circular top-hat function, which has a uniform value of 1 within
a specific circle (the pinhole) and 0 elsewhere (Figure 5.9) The size of the pinhole, often
expressed in Airy units (AU), is defined as:

AU = 1.22 λ

NA
,

where λ is the wavelength of light and NA is the numerical aperture of the microscope
objective.

• Convolution with the pinhole function: The total PSF is convolved with the
pinhole function to obtain the final PSF of the confocal microscope (PSFconfocal):

PSFconfocal = PSFtotal ∗ Fpinhole,

where the asterisk ∗ denotes the convolution operation. This step accounts for the effects
of the pinhole on the detected signal, which helps to improve the axial resolution and
reject out-of-focus light.

Figure 5.9: We model the pinhole by convolving the detection PSF with a pinhole function

5.3.5 Evaluation of the PSFs

These algorithms allowed us to compute artificial images using a well defined point-spread
function. This is a way to test the different point spread function, by using them to create
real images.
We inspired us heavily from the python package PyOTF, which uses pupil-function based
computations, and combine them with each-other to create photorealistic point spread func-
tion of given optical setups, such as confocal microscopes or SLIM microscopes.
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Aliasing and Nyquist criterion, a Fourier-Space view

Because of our discretized representation of the signal, we have a cutoff spatial frequency:
If we try to represent discretely a signal of too high frequency on a too coarse grid, we will
obtain aliasing, which will result in dramatic alterations of our PSF (Figure 5.10). Aliasing
can be seen very efficiently by looking at the OTF. When the nyquist criterion is respected,
all the frequencies available are well represented. When it is not, the spectrum is truncated,
which could result in undesirable effects. The only option is to use a bigger box, to represent
a larger set of frequencies.

Figure 5.10: Because of aliasing, we have limited in the range of spatial resolution that we can
represent numerically, for a given box.

Application: Creation of images with PSF models

All the previous PSFs models were introduced based on physical models. Our artificial image
generators allows us to do something that has never been done before: seeing the effects on
the different PSFs on a microscopy image.
We generated [600]3 images of a sphere, to observe the results of all the PSFs we talked about.
We represent for each image the central plane in the XY and XZ direction, and the correspond
values of their PSFs and OTFs (Figure 5.11).

Gibson-Lanni PSF

We create two Gibson Lanni PSFs. We choose the lateral resolution to be 0.055µm−1, which
corresponds to half the nyquist criterion. For both of them, we choose NA = 1.27, λ =
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Figure 5.11: We created images using the PSFs that we discussed of, to see if they represent accurately
the reality.

0.585µm, and decide, for simplicity, to not add perturbations due to the optical path differ-
ences: ni = n∗

i , ng = n∗
g, tg = t∗

g, ti = t∗
i . The only parameter that we tune is zp, the sample

distance to the coverslip. For the Gibson centered we put zp = 0, and for the Gibson displaced
we put zp = 2µm.
We notice that the images created using the Gibson Lanni model are very perturbed. Even
without additional optical path perturbation, we represent a PSF that alterates a lot the
signal. Gibson Lanni may thus not be the best suited PSF model.

Pupil function

We also create an image purely based on the pupil function. As before, we choose the lat-
eral resolution to be 0.055µm−1, NA = 1.27, λ = 0.585µm, and do not apply any optical
aberrations from Zernike polynomial coefficients, to see the raw effects of the PSF. We use
ni = 1.33.

Confocal microscopes

We create images of confocal microscopes. As before, we chose the lateral resolution to be
0.055µm−1, NA = 1.27, λ = 0.561µm for the excitation PSF and λ = 0.585µm for the
detection PSF. We do not apply any optical aberrations from Zernike polynomial coefficients,
and use ni = 1.33.
We compute three PSFs, one with a perfect pinhole function (infinite Aperture), one with a
pinhole of 1 AU, and one with a pinhole of 10 AU.
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5.4 SuperResolution Microscopy models

Now we will emulate, as well, the effect of several super resolution microscopy methods.
We consider that our PSF is PSFconfocal, with a pinhole of 10 AU, and will mimic the
superresolution process trying to enhance the resolution of a microscope design. The common
point of all these methods is to create a shift of the PSF in Fourier Space, to enlarge the
spectrum of available frequencies and thus beat the resolution limit.

5.4.1 Structured illumination microscopy

To model the point spread function (PSF) for a structured illumination microscopy (SIM)
system, including both Wiener and Lattice SIM, we must consider different aspects of the
optical system and the structured illumination patterns. Here is a detailed explanation of the
process for each type of SIM, accompanied by relevant references:
In standard SIM, the sample is illuminated with a sinusoidal pattern of varying spatial fre-
quency and orientation. The interference between the structured illumination and the sample’s
spatial frequencies generates moiré fringes, which are detected and processed to reconstruct
a high-resolution image [56].
The spatial frequency f and the maximum angle of incidence α are calculated using the
refractive index and the numerical aperture:

f = 2π
ni

λ
, α = arcsin

(
NA

ni

)
. (5.25)

The structured illumination pattern is calculated for each orientation. The orientations are
given by:

ϕ ∈ {0,
2π

3 ,
4π

3 }.

For each orientation, the structured illumination pattern s is calculated by summing the
exponential terms of the plane waves at angles −α, 0, and α:

s(x, y, z) =
∑

c∈{1,0.5,1}
θ∈{−α,0,α}

c× eif [(x cos(ϕ)+y sin(ϕ)) sin(θ)+z cos(θ)].

Finally, the SIM PSF is obtained by summing the product of the generated PSF with the
squared amplitude of the structured illumination pattern s for each orientation:

PSFSIM =
∑

ϕ∈{0, 2π
3 , 4π

3 }

PSFconfocal × |s|2.

These formulas help to generate the point spread function for a structured illumination mi-
croscopy system with three orientations, illustrating the interplay between the optical param-
eters and the structured illumination pattern.

5.4.2 Wiener SIM

Wiener SIM is an extension of standard SIM, where the reconstruction algorithm is based on
Wiener filtering [57]. This method attempts to reduce the noise amplification associated with
the standard SIM reconstruction process. The Wiener SIM PSF (PSFW iener) can be modeled
by applying a Wiener filter (WW iener) to the standard SIM PSF:

PSFW iener = WW iener ∗ PSFSIM .
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First, the optical transfer function (OTF) is calculated by taking the squared magnitude of
the Fourier transform of the PSF:

OTF = |FT (PSF )|2.

A Wiener filter is then applied to the OTF using a constant w, which is determined as the
maximum value of the OTF divided by 100:

w = max(OTF )
100 , OTFW iener = OTF

OTF + w
.

The Wiener-filtered PSF is obtained by taking the inverse Fourier transform of the Wiener-
filtered OTF:

PSFW iener = FT −1(OTFW iener).

The spatial frequency f and the maximum angle of incidence α are calculated using the
refractive index and the numerical aperture:

f = 2π
ni

λ
, α = arcsin

(
NA

ni

)
.

The structured illumination pattern is calculated for each orientation. The orientations are
given by:

ϕ ∈ {0,
2π

3 ,
4π

3 }.

For each orientation, the structured illumination pattern s is calculated by summing the
exponential terms of the plane waves at angles −α and α:

s(x, y, z) = eixf +
∑

θ∈{−α,α}
eif [(x cos(ϕ)+y sin(ϕ)) sin(θ)+z cos(θ)].

Finally, the Wiener-SIM PSF is obtained by summing the product of the Wiener-filtered PSF
with the squared amplitude of the structured illumination pattern s for each orientation and
subtracting 8 times the Wiener-filtered PSF:

PSFW ienerSIM =
∑

ϕ

PSFW iener × |s|2 − 8× PSFW iener.

5.4.3 Lattice SIM

Lattice SIM is a variant of SIM that uses two-photon excitation and a lattice-shaped illumina-
tion pattern to achieve higher imaging speeds and reduced photobleaching compared to other
SIM techniques [58]. The Lattice SIM PSF (PSFLattice) can be modeled as the convolution
of the two-photon excitation PSF (PSF2P ) and the detection PSF (PSFdet), convolved with
the lattice illumination pattern (FLattice):
The spatial frequency f is calculated using the refractive index and the wavelength:

f = 2π
ni

λ
.

The structured illumination pattern s is initialized with an exponential term corresponding
to a plane wave in the z-direction, summed to the exponential terms of the plane waves at
angles −α and α for each orientation. The orientations are given by:
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Figure 5.12: We created images using PSFs that were constructed from the pupil function PSFs, that
mimic several superresolution modalities.

ϕ ∈ {0,
π

2 }.

The structured illumination pattern s is expressed as follows:

s(x, y, z) = eizf +
∑

θ∈{−α,α}
ϕ∈{0, π

2 }

ei[((x cos(ϕ)+y sin(ϕ)) sin(θ)+z cos(θ))×f ].

Finally, the lattice SIM PSF is obtained by multiplying the Wiener-filtered PSF with the
squared amplitude of the structured illumination pattern s:

PSFLatticeSIM = PSFW iener|s|2.

5.4.4 Super resolution and deconvolution

The images generated from these PSFs, are not looking very well. We see that these methods
tends to enlarge the spectrum of displayed frequencies (Fig 5.13), but that this spectrum is
very non-uniform, which affects the quality of the output image. The role of deconvolution
is to flatten this spectrum. We see that the effect of these superresolution methods is thus to
enlarge the spectrum of frequencies at the expense of its uniformity, and it is then dependent
of a downstream deconvolution, to flatten this spectrum.
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Figure 5.13: Superresolution methods systematically make the spectrum of available frequencies
bigger. Combined with deconvolution, they provide better images than what would be possible without
them.

5.5 Creation of artificial datasets

Figure 5.14: Two methods to create annotated datasets

The traditional method for training neural networks for 3D image analysis consists of an-
notating manually the images by experts. They carefully label the objects or structures of
interest to create a ground truth dataset [59] This annotated dataset is then employed to
train the neural network, allowing it to learn the features and relationships between the input
images and the corresponding labels (Figure 5.14, Solution 1). However, this manual anno-
tation process can be time-consuming, labor-intensive, and costly, especially when dealing
with large numbers of 3D images. An alternative approach to address these challenges is the
generation of artificial images and their corresponding labels (Figure 5.14, Solution 2). This
method offers several advantages compared to manual annotation. Firstly, it significantly
reduces the manual effort required, as the need for expert annotation is eliminated. This
can result in a more cost-effective solution, particularly when large datasets are required for
training purposes. Additionally, the generation of artificial images enables the creation of
tailored datasets that can include specific features, structures, or conditions relevant to the
problem being addressed, that could not be obtained from annotated images, as there is no
way to generate such corresponding image/labels pairs.

Figure 5.15: Several methodologies can be applied to create datasets: Left: starting from an input
mesh, and generating a artificial image and label from it. Right: Generating artificially a label,
constructing the corresponding mesh wiht Delaunay-Watershed 3D, and generating an image from the
mesh.
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There are two critical aspects that need to be addressed to fully leverage the potential of
generating artificial images for neural network training: the automatic generation of labels
and the enhancement of image photorealism. The Figure 5.15 displays two different methods
proposed to generate datasets. The left image shows the process of starting from an input
mesh, and generating an artificial image and label from it. On the other hand, the right image
shows the process of generating an artificial label, constructing the corresponding mesh with
Delaunay-Watershed 3D, and generating an image from the mesh. We will see in next section
how to solve these two problems.

We also propose a graphical user interface (GUI) designed to facilitate the use of our proposed
methodology by biologists (Figure 5.16). The GUI enables users to perform various operations
in a more intuitive manner, promoting ease of use and accessibility. Among the features of
the GUI are an adjustable bounding box, mass parallel GPU implementation in OpenCL,
user-defined PSF, adjustable autofluorescence for closed surface meshes, and a hybrid tiff-
mesh viewer. Additionally, the GUI provides the generation of semantic segmentation masks
for all geometrical primitives, enabling the insertion of meshes of different dimensions and
combining them to create realistic composite microscopy images.

Figure 5.16: Our artificial image creator comes with a user friendly interface

5.5.1 Creation of volumetric masks from meshes in 3D

Creation of semantic segmentation mask

From a given mesh and a box, if one want to generate labels automatically, how should he
proceed ? We proposed a simple method to do that: For each vertex of the mesh, find the
nearest voxel, and put its value to one (Figure 5.17). The longest step is going to be the
nearest neighbor search, which can be implemented very easily using a K-D Tree. However,
this is only going to work with a grid that is more coarse than the mesh. More precisely, if the
dimensions of a voxel in the (x, y, z) directions is (a, b, c), we need, for each edge of the mesh,
to have its two vertices in a neighboring voxel, i.e we need each edge to be shorter than these
dimensions a, b, c. To achieve this condition, we refine our mesh by subdividing the triangles
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Figure 5.17: A simple heuristic allow to compute semantic segmentation masks on coarse grids

until every edge verifies this condition.
This gives the following algorithm:

1 ## v o x e l s i z e i n ( x , y , z ) d i r e c t i o n s i s ( a , b , c )
2 ## We s t a r t w i th a g r i d o f v o x e l s G = {M=0}
3 d min = min ( a , b , c )
4 de f c r e a t e s e m a n t i c m a s k (G, mesh , dmin ) :
5 w h i l e min ( mesh edge l e n g t h )>d min :
6 s u b d i v i d e mesh
7 f o r each v e r t e x i n mesh :
8 f i n d c l o s e s t v o x e l M i n G
9 s e t M = 1

10 r e t u r n G

Figure 5.18: Remeshing allow to keep the same methodology

Creation of instance segmentation mask

Figure 5.19: Normal orientations allows to check if each voxel is inside or outside the mesh

Now if want to create instance creation masks, i.e indicating with a label to which cell belongs
each voxel, we need to use the fact that our mesh is a bounded volume, that defines an inside
and an outside space. For each voxel M, we search the closest face centroid C. We call the
normal of this face N. If C⃗M · N⃗ > 0, the voxel will be inside the volume. Otherwise it will
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be outside. As multimaterial meshes describes several bounded volumes in contact with each
other, this procedure can be directly applied for such structures.

Figure 5.20: This methodology can be applied to multimaterial meshes as well

1 ## v o x e l s i z e i n ( x , y , z ) d i r e c t i o n s i s ( a , b , c )
2 ## We s t a r t w i th a g r i d o f v o x e l s G = {V=0}
3 d min = min ( a , b , c )
4 de f c r e a t e i n s t a n c e m a s k (G, mesh , dmin ) :
5 w h i l e min ( mesh edge l e n g t h )>d min :
6 s u b d i v i d e mesh
7 f o r each t r i a n g l e i n mesh :
8 C = compute c en t r o i d ( t r i a n g l e )
9 N = compute normal ( t r i a n g l e )

10 m 1 , m 2 = r e t u r n l a b e l ( t r i a n g l e )
11 f i n d M i n G, c l o s e s t v o x e l to C
12 i f s c a l a r p r o d u c t (CM,N) >0:
13 s e t M = m 1
14 e l s e :
15 s e t M = m 2
16 r e t u r n G

5.5.2 Style Transfer

Image photorealism is a critical aspect when training neural networks, as it helps ensure that
the model generalizes well to real microscopy data. Several methods can be explored. The
idea is to modify the original artificial microscopy image, while keeping all the features intact,
so our artificially generated labels would still correspond to the images.

The first solution is to apply camera noise, to reproduce the random noise observed on mi-
croscopy images, coming from the software Aydin [60] (Figure 5.21 up). The result is quite
convincing, but such noise generation fails at reproducing the texture of the embryos, their
imperfections and irregularities. Such notion of ”texture”, or ”style”, is in fact very compli-
cated to define, and has been the object of many studies. Style transfer is a technique that
combines the stylistic features of a source image with the content of a target image, resulting
in a novel and visually coherent output. Early attempts to computationally model style trans-
fer can be traced back to the work of [61], who introduced the concept of ”image analogies”
to synthesize textures from one image into another in order to emulate various artistic styles.

A significant advancement in the field was achieved with the introduction of neural style trans-
fer by [62]. This method employs deep learning, specifically Convolutional Neural Networks,
to analyze and replicate the style of a source image while preserving the content of a target
image. The algorithm optimizes a loss function that balances content and style, effectively
merging the two images into a visually appealing output.
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Figure 5.21: Several methods can be studied, along with PSF design, to ameliorate photorealism.
Camera noise aims at mimicim the random noise of the camera. Neural style transfer is very good at
reproducing the textures of other images, while keeping intact the original details of the image

Recently, diffusion-based methods have emerged as an alternative to neural style transfer.
These approaches, such as those described by [63] and [64], utilize anisotropic diffusion,
which smooths images while retaining essential details. By iteratively applying this pro-
cess, diffusion-based style transfer generates a stylized image that emphasizes the aesthetic
features of the source artwork. As in other fields using deep-learning based methods, pro-
gresses are very fast and never stops. We used the algorithm of [65], to show that we can very
well reproduce different styles of imaging with it (Figure 5.21 down). It is very hard to keep
track of all the progresses in the field, and thus we prefered not to loose too much time on
this topic, in spite of very convicing results.

5.6 Inverse rendering of microscopy images

In spite of the power of neural networks, their expressivity also comes with drawbacks: CNNs
are prone to feature ”hallucinations” (i.e. detecting aberrant signal from noise), which is prob-
lematic for scientific research and medical applications, that cannot suffer from such errors.
The goal of fluorescence microscopy is to identify one particular biological structure, which
has generally a high degree of organization, such as lipid-membranes, cytoskeletal networks,
or other organelles, by making them bright while keeping everything else dark. Therefore,
except for unavoidable noise, fluorescence images are generally very sparse and made of well-
structured objects such as points, filaments, surfaces or bulk solids. Because of this underlying
simplicity, in parallel to the development of deep-learning based tools, one could witness in
recent years a reverse trend in microscopy image analysis, going away from deep-learning, in
favor of methods that rely on stronger prior knowledge [60,66,67].

Here, we demonstrate that differentiable rendering [68] stands out as a powerful approach to
insert such priors for fluorescence image analysis: from defined parameters, such as parametrized
shapes of objects and optical properties of the imaging system, one can approximate the im-
age formation process. We introduce deltaMic, a differentiable renderer for 3D fluorescence
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Figure 5.22: Overview of the differentiable fluorescence microscopy rendering pipeline. The renderer
takes as input a triangle mesh, that represents the shape of a biological object, and a parameterized
point spread function (PSF), that emulates the optics of the microscope, and outputs a 3D artificial
microscopy image. By making every element of the pipeline differentiable, the gradients of the voxel
image values with respect to the mesh geometry and to the PSF parameters can be computed efficiently
with backpropagation. In turn, these gradients can be used to optimize input parameters to make the
output image fit a real microscopy image.

microscopy images. Rendered images can be compared to true biological images using a voxel-
based norm, and gradients of this loss with respect to input parameters can be determined
efficiently with automatic differentiation. Minimizing this loss with a gradient-based opti-
mization allows to fit the geometry of biological objects and to emulate the optical model of
the microscope.

Figure 5.23: We apply our pipeline to learn both vertices position and PSF parameters from 3D
confocal microscopy images.

We propose a narrow-band strategy to accelerate massively the computation of the mesh FT,
and provide a custom C++/CUDA implementation of both the forward and the backward
passes that greatly enhances speed and memory efficiency. Our PyTorch implementation al-
lows for gradients of the rendered 3D image values with respect to input parameters to be
computed through automatic differentiation. We demonstrate the inverse-rendering capabili-
ties of our pipeline by reconstructing the PSF and the complex shape of various objects and of
early embryos from artificial and true fluorescence images. Importantly, we rely on previously
developed approaches in the field of differentiable rendering to regularize the optimization
problem [69].
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5.6.1 Experiments

Numerical implementation

Acceleration

The computation of the artificial image requires to compute the FT ûΛ for each of the N voxels
of the spatial grid and for each of the nt triangles, with a runtime complexity of O(N·nt).
The mesh FT gradient requires to compute a O(1) sum for each voxel, for each of the nv

vertices, leading to a complexity of O(Nv). In practice, a 5003 confocal microscopy picture
has of 125 millions voxels, and a reasonable mesh will have ≈ 103−4 vertices and triangles,
leading to prohibitive computations times if this operation is not parallelized correctly. This
high computational cost is a major restriction that has hampered the development of spectral
methods in 3D, in spite of interesting potential applications [70].

Figure 5.24: Benchmarking of the mesh FT computation. Left In a very small 80 triangles sphere,
our custom CUDA implementation improves the speed and the memory efficiency of the mesh FT by
several orders of magnitude. Right In a [100]3 box, the forward pass of the mesh FT scales linearly
with the number of triangles.

We propose two complementary strategies to accelerate the mesh FT: GPU parallelization
and a narrow-band approximation method in the frequency domain.

GPU parallelization The grid-based structure of a 3D image makes its implementation
naturally adapted to massivelly parallel computations on graphical processing units (GPU).
We provide a custom CUDA implementation of the forward and the backward pass. As shown
in figure 5.25, on a single NVIDIA V100 GPU, we obtain a ≈ 103 speedup compared to the
vectorized CPU implementation and we can perform computations with a far greater box size
before overflow.

Narrow-band approximation in the frequency domain As stated previously, the FT
of the image is expressed as the element-wise product between the FT of the mesh and of
the PSF: ûα = ûΛ · ĥ. Practically, our PSF acts as a low-pass filter, that will give more
weight to low spatial frequencies of the mesh. A blurred image has a sparse PSF, with largest
amplitudes for frequencies close to 0, therefore obliterating the fine details of the mesh. The
more resolved the original biological image, the more frequencies in the PSF are needed to
properly render it.
For any given spatial frequency ξ, if ĥ(ξ) ≈ 0, one can spare the computation of ûΛ(ξ) as
it will have negligible impact on the value of ûα(ξ). In practice, we apply a cutoff in the
frequency domain, and only compute the FT of the mesh for the frequencies for which the
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PSF is larger than 1% of its maximal value. For sparse PSFs, this spectral narrow-band
method can reduce the computational cost by several orders of magnitude (table 5.1).

A staggered optimization scheme

In spite of all the speed improvements, computing the FT of the mesh and its gradient
constitutes the computational bottlenecks of our pipeline. We have two ways of computing
the FT of the mesh: a fast and approximate way using the narrow-band method, and a slow
and exact way by doing the full computation. The backward path is ≈ 10 times slower than
the forward path, it is thus crucial to compute the backward path with the narrow-band
method when possible. We decide therefore to decompose the coupled optimization problem
into two optimization sub-problems, that are iterated in a staggered manner:

(a) Shape optimization: To learn the shape, one does only need to compute the mesh FT
approximately. We compute the approximate FT of the mesh using the narrow-band
method, and make an optimization step for the vertex positions, without optimizing the
PSF.

(b) PSF optimization: To learn the point spread function, one need to know the value of the
FT of the mesh in all the available frequencies, and should not be biased by the narrow-
band frequency threshold that relies on the current values of the PSF. We compute the
exact FT of the mesh, and make an optimization step for the PSF parameters, without
optimizing the shape.

Shape optimization step

Figure 5.25: Without regularisation, the gradient descent fails to converge on the original shape

We optimize shapes by minimizing a modified L2 norm Φκ = ||u − m||2 ∗ mκ with κ = 1,
that removes external influence from dark regions of the original image m. Inspired by other
works in differentiable rendering [69], we optimize vertex positions using AdamUniform and
regularize gradient values by adding a diffusion term:

v← x− η(I + λL)−2 ∂Φ1
∂v , (5.26)

where the Laplacian L ∈ Rnv×nv is a connectivity Laplacian defined on our triangle mesh,
and λ = 50. Computing explicitly the inverse (I + λL)−2 requires to use dense algebra, which
can lead to prohibitive memory usage when the number of vertices nv of the mesh grows.
Instead, we solve the equivalent problem of finding the solution A to (I + λL)−2A = ∂Φ1

∂v
with a sparse Cholesky decomposition [69,71].
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Figure 5.26: Surface mesh reconstruction from 3D artificial images. Artificial 3D images were created
from triangle meshes using our renderer. Then, starting from spheres or toruses, we minimize the L2
norm between the rendered and the target images to reconstruct the original shape.

Figure 5.27: Shape reconstruction of C. elegans embryos. Starting from a foam ground truth, we
optimize both vertices position and PSF parameters to recover individual cell shapes from real confocal
microscopy data.

PSF optimization step

The optimization of PSF parameters aims at reproducing the whole image in details, for both
light and dark regions. Minimizing the traditional L2 norm ϕ0 = ||u−m||2 is therefore well-
adapted to such task. We learn the correlation matrix Σ with the original Adam optimizer [72].

Shape reconstruction from artificial images

We present in fig. 5.26 several examples of shape reconstruction from some classical meshes
in computer graphics. Artificial images are generated with a Gaussian PSF characterized by
an isotropic correlation matrix. Here, we focus on shape reconstruction and start directly
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Optimization step forward (s) backward (s)
PSF 0.001 0.004
Mesh (naive) 3.435 49.38
Mesh (narrow-band) 1.757 17.04

Table 5.1: Average duration of the PSF and mesh optimization steps for the reconstruction described
in section 5.6.1 with a naive implementation (naive) and with the spectral narrow-band approximation.
The mesh has 4000 vertices.

from the target PSF correlation matrix Σ. Starting from meshes of elementary shapes (a
sphere or a torus depending on the topology) we compute 10000 optimization steps for each
example. Without any remeshing operation, our regularized shape optimization algorithm
accurately converges to original shapes. Interestingly, in each of the four examples studied,
the mesh converges with no collisions, although no collision detection or resolution method is
implemented [73,74].

Cell shape reconstruction and Gaussian PSF fitting on C. elegans embryo mi-
croscopy images

We use our method to fit shapes of cell clusters of C. elegans embryos, using 3D confocal mi-
croscopy images from [75]. The images are of size [205× 285× 134]. We describe cell clusters
as non-manifold multimaterial meshes, as done in previous works [76], and we use a multi-
material mesh-based surface tracking method [77] to manage remeshing, collision detection
and T1/T2 topology transition [78] operations. As first guesses, we generate foam-like multi-
material meshes with the correct number of cells by minimizing a surface energy at fixed cell
volumes [54]. The resulting cell clusters are of roundish shapes with ≈ 4000 - 10000 vertices
that are subsequently optimized to fit true microscopy data. Here, we optimize jointly the
PSF and the vertex positions in the mesh, following the strategy described in section 5.6.1.
The duration of each step with a mesh of 4000 vertices is displayed in table 5.1. On both 4,
6 and 16 cells embryos, we predict individual cell shapes accurately after 10000 optimization
steps, and the resulting reconstructed image is very close to the original microscopy image
(fig. 5.27).

5.6.2 Extension : 2D Differentiable Rendering

The 2D case, where we consider a 1D curve embedded in 2D, is simpler to tackle than the
3D problem. A thourough study of this case gives a lot of insight about the difficulties
encountered in 3D. We will study the discrete example of a polygonal curve embedded in 2D,
that can be multimaterial or not. In two dimensions, the formulas and their derivation are
close to the one in 3D. We do not give explicit formulas here and refer the reader to the 3D
derivation.

Diffusion

As in 3D, we modify the gradient descent by adding a diffusion term:

x← x− η(I + λL)−2 ∂Φ
∂x (5.27)

Where L ∈ Rnv×nv is the graph connectivity Laplacian:
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Li,j :=


deg(vi) if i = j

−1 if i ̸= j and vi is adjacent to vj

0 otherwise,

(5.28)

Figure 5.28: The diffusion of the gradient helps regularizing the gradient descent, without adding any
constraint in the loss optimized

On our simple example, the gradient descent is smoothed by the gradient diffusion, which
helps avoiding mesh intersections, and allows for larger steps at a small memory and speed
cost.

Point Spread Functions in 2D

Figure 5.29: Gaussian VS Airy PSF. In 2D, most PSFs gives the same results. We can thus use the
simple Gaussian PSF.

In 2D, the best spot of light that can be generated by a lens with a circular aperture is called
an Airy disk. Its normalized intensity does only depend to the distance to its central point r

and is defined as hairy(r) =
(2J1(r)

r

)2
, where J1 is the bessel function of first kind or order

1. For any parameters, it is hard to distinguish, in practice, between such an Airy pattern
and a Gaussian function. We will thus do our analysis in the following with a Gaussian PSF,
and learn the covariance matrix Σ ∈ R2×2.

Rendering a polygonal line

The shape considered is a closed polygonal line uλ = (V, E) described by the set of its vertices
and of its edges. The polyline will be converted into an image uα, and the position of its
vertices will evolve to minimize the objective function ϕ defined as the L2 norm between uα

and the true microscopy image: ϕ(uα) = |uα −m|2.
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Figure 5.30: We can, as with triangle meshes, render polygonal lines into microscopy images

Results: In-Silico

We study the very simple example of finding the shape of an ellipse, starting from a circle.
For example, the circle could model the boundaries of a single cell observed with a given plane
from a fluorescence microscope. Our iterative procedure updates the position of the vertices
using VectorAdam [79], progressively modifying the shape to modify the image, making it
closer and closer to the ground truth, eventually converging to the original shape after 1500
steps.

Figure 5.31: Fitting the circles on an ellipse works nicely

5.6.3 Summary

We have introduced deltaMIC, a differentiable fluorescence microscopy image renderer that
takes a surface mesh and a parametrized PSF to generate realistic 3D confocal fluorescent
images. The GPU-parallelized C++/CUDA implementation of the mesh FT allows to com-
pute the forward and backward passes in tractable times, and is further optimized through
a spectral narrow-band method. We demonstrate that our differentiable renderer can accu-
rately retrieve fine details of complex shapes from artificial or real 3D microscopy fluorescent
images, thanks to its ability to fine-tune the shape loss function via the PSF. Contrary to
other active-mesh segmentation methods, it does not require arbitrary shape regularization
terms to achieve smooth results. Yet, other priors may be added to constrain shapes, based
on physical or geometric knowledge.

Our method constitutes a fundamental building block for inverse rendering of 3D fluorescence
microscopy images and paves the way for many applications. Extending our approach to 1D
polygonal lines would allow to characterize the geometry of filaments in cytoskeletal networks,
whose segmentation remain a major challenge [80]. Furthermore, our method shares several
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insights with deconvolution techniques for microscopy, which are fundamentally based on
inverse image rendering and optimization [81]. Implementing more photorealistic PSF models
based on specific microscope modalities [14,15,82] would allow performing blind deconvolution
of microscopy images in an original manner. From an implementation perspective, and in spite
of all the improvements proposed, the computational cost of our methoxd remains a bottleneck
for large 3D images, and other acceleration strategies should be explored. Eventually, it could
be interesting to explore deep-learning based applications, where our renderer would be a
differentiable building block of a larger pipeline, as in several 2D applications [51,83].

5.7 Conclusion

In conclusion, this work has presented a comprehensive approach for bridging the gap between
models and data in fluorescence microscopy by developing a differentiable artificial microscope.
We have introduced an image formation model and a rendering process for fluorescence mi-
croscopy images, laying a solid foundation for generating realistic images. Moreover, we have
explored methods to define geometrical models of biological objects, establishing the Fourier
Transform of triangulated surfaces and its gradients.

A key application of our renderer involves the systematic investigation of various Point Spread
Function (PSF) models, including Gaussian PSF, Gibson and Lanni model, pupil-function-
based model, and confocal microscopy PSFs. Evaluating these models has yielded valuable in-
sights into their strengths and limitations. Subsequently, we have delved into super-resolution
microscopy in images, examining structured illumination microscopy, Wiener SIM, and Lat-
tice SIM, in light of our image creation method.

We have also provided methods for creating artificial datasets, introducing novel techniques
for generating volumetric masks from 3D meshes, and enhancing the photorealism of images
through neural style transfer. This contributes to the development of high-quality datasets
for validating computer vision algorithms and training computer vision models. Our use of
inverse rendering in microscopy images has demonstrated the potential for accurately recon-
structing complex shapes from both artificial and real 3D microscopy images. The extension
to 2D differentiable rendering presents additional opportunities for future applications and
research.

Physicists develop 3D models of biological objects, that we aimed to merge with real mi-
croscopy data. Throughout this ambitious journey, we realized that a novel approach would
be to create an artificial fluorescence microscope. Our framework encompasses a wide range
of biological objects and PSFs. Our inverse rendering approach enables researchers to extract
more accurate and detailed information from biological images, ultimately contributing to a
deeper understanding of complex biological systems and paving the way for new discoveries
in the life sciences.
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Chapter 6

Inference of flows from kymographs
with optimal transport

Written in collaboration with Hervé Turlier. Experiments were performed by Henry de Belly,
Shannon Yan, supervised by Carlos Bustamante and Orion D. Weiner.

The application of this work is present in a publication in the peer-reviewed journal Cell.
Another paper presenting the method is currently in preparation.

This project started as a side project where I developped a data analysis pipeline for a cell
biology project. We wanted to determine the intensity of membrane flows. We wanted to
apply traditionnal methods to measure flows but all of them were unsufficient. I developped
this new method to measure membrane flows using the classical methodology of formulating
a forward problem explaining the data, to learn from the data by solving the inverse problem.
This collaboration worked very well, and was very importantly a way to discover optogenetics,
which is one of the best methods to study biological systems in a reproducible manner.

Methods to measure membrane flows in an accurate and quantitative manner are
key to understand the complex dynamics of biophysical processes taking place
in cells. We introduce a novel method for the inference of membrane flows from
kymographs, that adresses some limitations encountered by current methods such
as Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV).
Our method links particle distribution and velocity fields through a flow model
that can then be inverted using optimal transport theory. This approach allow to
infer flows in scenarios where tracing individual particle trajectories is unfeasible
or inefficient, using kymographs as a coarse-grained representation of particle
distribution from which flows can be inferred. We validate our algorithm using
artificially generated data, and apply it to real microscopy data of optogenetically
activable cells that generate protrusions and consequently, repeatable flows. The
inferred flows, matches both qualitatively and quantitatively data obtained with
FRAP experiments, and provides a finer spatial resolution.
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Chapitre 6

Inférence d’écoulements à partir de
kymographies avec transport optimal
Écrit en collaboration avec Hervé Turlier. Les expériences ont été réalisées par Henry de
Belly, Shannon Yan, sous la supervision de Carlos Bustamante et Orion D. Weiner.

L’application de ce travail est présente dans une publication dans la revue scientifique à comité
de lecture Cell. Un autre article présentant la méthode est actuellement en préparation. Ce
projet a commencé comme un projet annexe où j’ai développé une pipeline d’analyse de
données pour un projet de biologie cellulaire. Nous voulions déterminer l’intensité des flux
de membrane. Nous souhaitions initialement appliquer des méthodes classiques pour mesurer
ces flux, mais toutes étaient insuffisantes. J’ai développé cette nouvelle méthode pour mesurer
les flux de membrane en formulant un problème direct expliquant les données, pour ensuite
apprendre des données en résolvant le problème inverse. Cette collaboration a très bien fonc-
tionné et a été un excellent moyen de découvrir l’optogénétique, qui est l’une des meilleures
méthodes pour étudier les systèmes biologiques de manière reproductible.

Pour saisir la dynamique complexe des processus biophysiques qui ont lieu dans
les cellules, il est essentiel de disposer de méthodes permettant de mesurer avec
précision et de manière quantitative les flux de membrane. Nous introduisons
une nouvelle méthode pour l’inférence des flux à partir de kymographies, qui
passe outre certaines limitations rencontrées par les méthodes actuelles telles
que la vélocimétrie par images de particules (PIV) et la vélocimétrie de suivi de
particules (PTV). Notre méthode relie la distribution de particules et les champs
de vitesse à travers un modèle de flux qui peut ensuite être inversé en utilisant
des méthodes de transport optimal. Cette approche permet d’inférer des flux
dans des scénarios où le traçage des trajectoires de particules individuelles est
irréalisable ou inefficace, en utilisant des kymographies comme une représentation
grossière de la distribution de particules à partir de laquelle les flux peuvent
être inférés. Nous validons notre algorithme en utilisant des données générées
artificiellement, et l’appliquons à de vraies données de microscopie de cellules
activables optogénétiquement qui génèrent des protrusions et, par conséquent, des
flux, de façon répétable. Les flux inférés correspondent à la fois qualitativement
et quantitativement aux données obtenues avec des expériences FRAP, tout en
fournissant une résolution spatiale plus fine.

https://www.sciencedirect.com/science/article/pii/S0092867423005330
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6.1 Introduction

The advent of novel microscopy paradigms has revealed the intricate and dynamic nature
of cell biology. These techniques shed light on the spatiotemporal organization within cells,
revealing how various biological molecules interact, move, and distribute themselves in the
dynamic environment. To fully understand these processes, flow measurement techniques
plays a major role, enabling us to decode the inner workings of cells by tracking the paths
of biomolecules, organelles, and other sub-cellular entities. In particular, the membrane is
involved in various processes, from cell motility to polarization and mitosis [1–4]. Measuring
flows on membrane is difficult, but is absolutely required to better understand these processes.

In order to measure these flows, several methods have been developped. Particle Image
Velocimetry (PIV) (first developed in fluid mechanics [5–7] it has then been applied with
considerable success in biology [8, 9]) and Particle Tracking methods [10–12], involves the
use of fluorescent particles as tracers in a fluid medium. These particles are tracked across
successive frames, enabling the estimation of velocity fields. However, the adaptation of such
methods for tracking membrane flows in biological systems remains difficult. In this case, the
method requires to embed fluorescent particles within the cell membrane. The insertion of
such particles is difficult, as cell membranes constitutes a complex medium that is far from an
homogeneous lipid bilayer. Moreover, the fluorescent particles would have to be small enough
to avoid disrupting the membrane dynamics, yet large enough to be detectable and trackable
under a microscope. Balancing these opposing requirements poses a significant challenge.
Thus, while PIV can provide valuable insights into bulk flow dynamics, its adaptation for
membrane flow tracking in biological systems is tedious.

Optical flow estimation [13, 14] emerges as another powerful technique for understanding bi-
ological movement. Unlike PIV or particle tracking, this technique analyzes the apparent
motion of brightness patterns to extract quantitative estimations of the velocity and direction
of movement across the field of view. This method is particularly valuable in situations where
tracking individual particles is impossible or impractical, such as when estimating movements
of deformable elements such as biological objects. Applications in cell biology have included
tracking cell movements in embryos [15] and movements of extracellular matrix [16]. While
offering interesting insights, it is not well adapted to study internal rearrangements happening
on the surface of the membrane.

Optogenetic
activation

Figure 6.1: In our biological use-case, we observe flows when the cell protrudes (membrane become
thinner at the back and thicker at the front). However, tracking the individual fluorophores is impos-
sible.
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Another widely used method to provide information about movement across membranes is
Fluorescence Recovery After Photobleaching (FRAP) [17–21]. It involves a pre-bleaching
phase where fluorescent structures are imaged, followed by a photobleaching phase where a
targeted region within the cell is exposed to high-intensity light, resulting in irreversible flu-
orescence loss. Following photobleaching, the cell is imaged as fluorescence recovers due to
the migration of unbleached, fluorescent molecules into the bleached area. Analysis of the
fluorescence recovery curve yields information about diffusion coefficients, binding kinetics,
and proportions of mobile and immobile molecules. FRAP has proven to be very effective
for investigating molecular mobility and estimating diffusion rates [22, 23]. However, its low
spatio-temporal resolution makes it less suited for studying active transport and flow dynam-
ics of molecules over space and time.

In response to these challenges, we introduce a novel method to infer flow dynamics from
kymographs. We postulate a flow model, that allow to formulate a master equation linking
the particle distribution and the velocity field. This equation can be inverted using optimal
transport, which provides a natural regularisation rooted in the physics of the system for this
ill-posed inverse problem.. Our approach is designed for scenarios where tracking individual
particle movement is impossible or impractical, instead focusing on kymographs, that consti-
tutes a coarse-grained representation of particle distribution. We first validate our algorithm
with artificially generated data. Then, we apply our method on optogenetically activable
cells (Fig 6.1), that can generate protrusions at illumination, allowing to generate flows in
a repeatable manner. By comparing the inferred flows with velocities deduced from FRAP
experiments, we establish the biological relevance of the measured flows in both a qualitative
and quantitative manner. Our code is available at https://github.com/sacha-ichbiah/optiflow.

6.2 Flow model

6.2.1 Biological context, presentation of the problem

Fluorescence
microscopy image

Segmentation Fluorescence
quantification

0 50 100 150 200
Time (sec)

Back

Front

Back

Movie Kymograph

A

B

Figure 6.2: Kymograph generation pipeline (A) Cells are segmented, and the fluorescence inten-
sity can be measured along the membrane contour across given angular sectors. (B) The quantification
on every frame of a movie allow to generate a kymograph. Visually, it is possible to visualize two flows
from the kymograph: The forward flow, from them back to the front, followed by a backward flow,
from the front to the back.

Kymographs will be used for tracking dynamic membrane movements. They are created by
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segmenting and quantifying the cellular structure’s fluorescence distribution in each frame.
The cell membrane is divided into uniformly spaced angular sectors, from which one can
integrate the flurorophore distribution across space (Fig 6.2A). This process is done across
all frames, generating a kymograph—a chronological display of membrane distribution across
time (Fig 6.2A).

On the kymograph previously established, one may observe that at first, the distribution of
membrane is uniform. After the illumination, the distribution becomes peaked at the front of
the cell, becoming weaker at the back of the cell, before recovering to a uniform distribution
after the illumination is stopped. From this visual analysis, several questions arise:

• What kind of information can we extract from these observations?

• What kind of hypotheses are needed to infer a flow field?

When looking at the kymograph, one can deduce visually the occurence of the flow, repre-
sented in Fig 6.2B as directional arrows representing movement. The slope of these arrows
indicates the flow speed, providing a quantitative understanding of membrane dynamics. The
observation that we can deduce flows visually from the kymograph is at the heart of our
method. We will formalize these insights, and will study the collective displacement of the
membranes with a simple microscopic model.

6.2.2 Microscopic model
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Figure 6.3: Mathematical model used to infer flows from kymographs. (A) Spatial averaging
of independent fluorophore intensities leads to a flow model where the concentration at each discrete
spatial position evolves depending on the velocity attached to it (B) Forward and inverse problems.

We will introduce a simple model to describe flow. Given an initial distribution and a time
and space-varying velocity field, we can generate kymographs, i.e a table describing the his-
tory of the evolution of the flow. Inverting this model will allow us to infer the flows.

A discrete kymograph is defined by dividing the space into a finite number n of discrete boxes
of spatial coordinates xk = k∆x (k ∈ Z/nZ) and the time in discrete time steps separated
by a sampling time ∆t. Inside each of these boxes, we hypothesize that a large number of
fluorescent particles are present at random positions x. Biologically speaking, the particles
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are proteins tagged with a fluorophore such as GFP, and they are transported with a time-
variable velocity v(x, t). Depending on their initial position, they can either remain into their
initial box, or land into a neighboring one between a time t and a time t + ∆t. Here, we as-
sume the temporal sampling frequency high enough (i.e. the sampling time ∆t small enough)
such that, during a time ∆t, a fluorophore will not travel a distance larger than the spatial
sampling size ∆x. For an ensemble of fluorescent particles, we can define the normalized
velocity v̄(x, t) = |v(x, t)|∆t

∆x . If ∆t ≲ ∆x/vmax, where vmax is the maximum velocity of a
particle in the box, the normalized velocity measures a local probability for a particle to leave
the box. This condition implies that our sampling time must be adapted to the velocity scale
and small enough with respect to the sampling size.

If one can observe each particle and assign them a discrete position given the box in which
they fall into, he will have:

• If v(x, t) > 0: x(t + ∆t) = x(t) + ∆x with a probability v̄(x, t)
and x(t + δt) = x(t) with a probability 1− v̄(x, t)

• If v(x, t) < 0: x(t + ∆t) = x(t)−∆x with a probability v̄(x, t)
and x(t + δt) = x(t) with a probability 1− v̄(x, t)

6.2.3 Coarse-grained model

With classical fluorescence microscopy, following the displacement of each individual fluo-
rophore is usually out of reach. We observe instead an average intensity, which represents
the sum of individual fluorophores. Assuming a relatively uniform distribution of particles
inside each box at each time step, the previous microscopic model allows us to describe in a
coarse-grained manner the effect of a flow velocity v(xk, t) on an initial concentration µt(xk),
where the space is discretized as xk = k∆x (k ∈ Z/nZ).

To do so, we define a normalized velocity field, average of the true velocity of all fluorophores
in each box located at xk as V t(xk) =

∫ xk+∆x/2
xk−∆x/2 |v(x, t)| ∆t

∆x2 dx. Following our reasoning above,
this normalized velocity field also describes the fraction of particles that will jump to the next
box xk+1 (or to the previous one if v(x, t) < 0) in a time ∆t, while a fraction 1− V̄ t(xk) will
remain in its initial box centered at xk.

If we consider the concentration field of particles µt(xk)xk∈Z/nZ, and a normalized velocity
field V t(x)x∈Z/nZ, the evolution of the concentration may be cast into a master equation, for
all k:

µt+∆t(xk) = F [µt, V t](xk)
= µt(xk−1)V t(xk−1)1V t(xk−1)>0

+ µt(xk+1)V t(xk+1)1V t(xk+1)<0

+ µt(xk)(1− |V t(xk)|) (6.1)

where 1V t(x)>0 and 1V t(x)<0 are indicator functions that are 1 when V t(x) > 0, respectively
V t(x) < 0 and 0 otherwise.
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6.3 Inverse problem

6.3.1 Flow inference

When we observe the distributions of membrane intensity at two consecutive time steps
µt and µt+∆t, we observe that there has been a collective displacement of the particles be-
tween the two positions. To determine which particle goes where on average, we want to
invert the master equation (6.1): given the fields µt and µt+∆t, find V t such that ∀k ∈
Z/nZ, µt+∆t(xk) = F [µt, V t](xk).

This is a complicated inverse problem, due to the fact that the above expression changes with
the sign of V t(x). Moreover, it is ill-posed: the solution is not unique and there is generally
an infinite number of velocity fields that can explain the temporal evolution of the intensity
distributions. To regularise this inverse problem, we implement prior knowledge based on
physical principles. A first important physical hypothesis is that there is a notion of dissipa-
tion associated here to the flow. This dissipation is modeled by a cost function that we aim
at minimizing. This is physically a fair hypothesis for inferring the flows of the membrane,
that is limited by the relative friction with the cortex.

We therefore choose a cost function that depends on local the velocity vP of the path P as
C ∝ v2

P , which is consistent with a classical frictional dissipation. The local concentration
of fluorophores being good indicator of the membrane density and, as a consequence, of the
number of friction points, the local dissipation cost is furthermore expected to be proportional
to the local concentration and we define Ct(x) = µt(x)|V t(x)|2.

We now reformulate the flow inference problem between two time steps t and t + ∆t as a
minimisation of a cost function under the constraint of the master equation (6.1):

min
V t s.t F(µt,V t)=µt+∆t

∑
k

µt(xk)|V t(xk)|q (6.2)

where q = 2 corresponds to the physical cost function Ct(x) = µt(x)|V t(x)|2.
Remarking that the time ∆t between two sampling points remains the same, we can alter-
natively express the dissipation cost as function of the length lP of the path P , as far as it
remains small: Ct(x) = µt(t) lP (x)2

∆t2 .

We propose below a way to solve this constrained optimisation problem using optimal trans-
port. In fact, this method allows us to solve this problem for any q ∈ R in equation (6.2).

6.3.2 Optimal transport

Continuous transportation theory

Constrained optimisation problems as formulated in equation (6.2) can be cast into the generic
class of optimal transport problems, which is a mathematical field formalized by Gaspard
Monge [24], and revisited by Leonid Kantorovich who gave it its contemporary formula-
tion [25].

To introduce shortly the optimal transport formulation, we first define a distance function
d(·, ·), that takes as arguments two spatial positions along the membrane and returns a scalar
value that represents the distance between two points. We write c(·, ·) the cost function that
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Figure 6.4: Optimal transport flow inference procedure (A) (a) An illustrative example of
optimal transport between two discrete 1-dimensional distributions, at time t (blue) and time t + 1
(orange), which represent the amounts of membrane (or actin) along the membrane contour at two
different time points. (b) Cost matrix C, in which C[i,j] indicates the value of the cost to displace an
element from position i to the position j. Here, the cost function shown is the square of the curvilinear
distance. (c) Transport Plan to go from the distribution at time t to the distribution at time t + 1,
minimizing the total cost of the displacement, computed from the cost matrix in (b). (d) Distance
matrix D, in which D[i,j] indicates the value of the distance between an element at the position i and an
element at the position j. The distance chosen is the curvilinear distance. (e) The transport plan and
the distance matrix allow to compute the mean displacement for every position between times t and t
+ 1. (B) When inferring flow on cell membranes, we need to take into account the periodicity of the
contour, and modify cost and distance matrices accordingly. (C) Modified cost matrix (D) Modified
distance matrix.

takes as arguments spatial positions along the membrane and returns a scalar value that rep-
resents the cost to go from one place to another. In the following, we will use c(·, ·) = dq(·, ·).
We call the transport m a map such that m(µt) = µt+1.

In the continuous setting, we want to find the optimal transport m∗ that minimizes:

min
m,m(µt)=µt+1

∫
c(x, m(x))dµt(x), (6.3)

where the integration is done on the probability measure µt(x).
The optimal cost Wc(µt, µt+1) =

∫
c(x, m∗(x))dµt(x) is called the Wasserstein distance be-

tween two measures. Here we are more interested on the mapping on itself, that is called
the optimal transport matrix. Indeed, as this matrix gives a notion of distance traveled at
each point on the membrane, we will determine the speed of the membrane flows using these
discrete displacements.

Discrete optimal transport

Here we study discrete distributions. Following the notations of [26], we define a cost ma-
trix C, a transport matrix M and a distance matrix D (Fig 6.4A.a-d), discretized versions
of their continuous surrogates c(·, ·), m(·) and d(·, ·). For each discrete boxes i and j, of
positions xi and xj , we have : Di,j = d(xi, xj). The cost matrix is defined generally as
Ci,j = |Di,j |q = |dq(xi, xj)|, following the continuous case.

We write 1 the column vector where each value is one. For two simple distributions a and b,
the optimal transport M∗ is defined by:
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M∗ = argmin
M∈Rm×n

∑
i,j

Mi,jCi,j (6.4)

Where M1 = a; MT
1 = b;∀(i, j), Mi,j > 0. We compute the optimal transport M∗ using

the standard Earth Mover’s Distance (EMD) with [26]. This exact computation does not
scales well with the number of boxes n (It has a O(n3) complexity [27]) but the 1D case has
a low enough number of points to obtain results in a reasonable amount of time.

The velocity field V is obtained by averaging the distance traveled for every element (Fig
6.4A.e), and dividing by the timestep ∆t:

∀i, Vi = 1
∆t

(Di ⋆ Mi/a)T × 1 (6.5)

Where ⋆ is an element-wise multiplication, / the element wise division and × is the standard
matrix product. Xi denotes the ith column of the matrix Xi,j .

Optimal transport with periodic boundary conditions

In our use-case, the cells are circular, and thus our distributions have periodic boundary
conditions. One can travel along the membrane contour using a clockwise and an anticlockwise
path. To account for this periodicity, we adapted the cost and distances matrices (Fig 6.4B-
D). Moreover, we decided to compute algebraic distances (i.e positive or negative values), to
determine the direction of the flow from its sign (Fig 6.4D).

6.4 Results

6.4.1 Generation of velocity fields

We generate flow fields V from random Gaussian distributions of mean 0 and variance 1, with
values clipped between -1 and 1, that are smoothed twice using a sliding window of varying
length between 1 and 20, to average the sample values, both in space and time. Raising
the length of the convolution window raises the smoothness of the generated velocity field,
allowing to study the efficiency of inference with different regularities (Fig 6.5A).
The master equation 6.1 allows us to simulate flows when given an initial uniform concentra-
tion field µ0 and a flow field V (i.e we solve the forward problem of Fig 6.3B). We generate
data with n = 200 spatial coordinates and 50 timesteps, that is similar to the biological data
we will use later.

6.4.2 In-silico validation

Then we use our inference method to reconstruct a velocity field from the kymograph artifi-
cially generated (Fig 6.5B). With n = 200 spatial coordinates and 50 timesteps, the inference
procedure with [26] takes on average 0.612s1. The reconstruction error depends weakly on the
time convolution window, and mostly on the spatial convolution window (Fig 6.5C), which is
relevant with the fact that we infer the flows timestep by timestep. The flow reconstruction is
thus easier when inferring flows with a lower spatial heterogeneity (Fig 6.5C,D). As explained
before, we solved the problem for every distance q ∈ N∗. We evaluated the average error
taking q ∈ [1, 10] (Fig 6.5E), and observe that the error is low with q ∈ [2, 6], and raises a

1average over 100 iterations on a 8-core intel i9 CPU
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Figure 6.5: Numerical validation of the flow inference method on various simulated veloc-
ity fields. (A) We use various spatio-temporal convolution windows to create smooth velocity fields
from random gaussian values. (B) We use these velocity fields to generate kymographs from an initial
uniform distribution. We evaluate the error between the reconstruction and the ground truth using
an L1 error. (C) Heatmap of the average (n samples = 10) reconstruction error as a function of the
time and spatial convolution window. (D) Plot of the average reconstruction error as a function of
the spatial convolution window (n samples = 200, 10 samples for each temporal convolution window
ranging from 1 to 20) (E) Reconstruction error as a function of the factor q.

lot for the other powers, most probably because of numerical errors, confirming our choice of
q = 2.

6.4.3 Application to neutrophil-like HL60 cells

Figure 6.6: Experimental validation of the flow inference method with FRAP experiments.
(A) Kymographs of membrane fluorescence along the normalized cell circumference (y axis) show that
over time (x axis) membrane accumulates toward the protruding cell front and is depleted from the
back (n > 50, N = 6) (B) Inferred flows with our procedure (B). (C) FRAP membrane diffusion assay
(D) example kymograph of unbiased diffusion in a control cell and a protruding cell (E) sample fits
of individual timepoints of kymograph data with a Gaussian equation (F) Quantification of mean
shifts fit by linear regression to assay membrane flow rate in control cells and protruding cells. The
quantifications exhibit no apparent flow in control cells (u = 3.34 nm/s) and a biased flow toward the
side of protrusion in protruding cells (u = 35.51 nm/s) (N = 3, n = 3).

Then, we apply our method to neutrophil-like HL60 cells, using kymographs from our opto-
genetics experiments to infer flows, with n =80 and δt = 10s (Fig 6.6A,B). We recover two
flows, consistently with what we observed visually in Fig 6.2B (blue arrows). The forward
flow, from the back to the front, occur briefly after illumination (starting at t=70s, until 110s).
It is followed by the backward flow, starting at t=140s until t=180s.
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We validate these measurements with FRAP experiments (Fig. 6.6C). The experiments show
a time-dependent diffusion of fluorescence intensity consistent with a Gaussian fit of the FRAP
data (Fig 6.6D-E), allowing to measure the velociy of the membrane flow during protrusion .
The maximum velocity obtained from our method during the cell’s protrusion phase is 33.87
nm/s (Fig 6.6B), aligning closely with the 35.33 nm/s velocity from the FRAP experiments
during similar circumstances (Fig 6.6F). This close agreement between our method’s results
and FRAP data reinforces the validity of our inferences.

6.5 Conclusion

In this study, we introduced and evaluated a novel method for the inference of membrane
flows from kymographs, providing an alternative to traditional techniques such as PIV and
FRAP. Our method leverages a flow model, linking particle distribution and velocity fields
that can be inverted using optimal transport theory. The results validated on both artificially
generated data and real microscopy data indicate that our method can successfully infer flow
dynamics in situations where tracing individual particle trajectories is unfeasible.

An application to 3D data would hold many promises, but is much more complicated, requiring
a much more complex parametrization [28, 29] and registration [30–32] based on differential
geometry. However, our approach based on the inversion of a forward problem is very general,
and can be applied to many problems to make physical measurements from microscopy data.
The implementation of our method, available at https://github.com/sacha-ichbiah/optiflow,
provides a new and accessible tool for biologists, enrishing the toolbox to study and understand
the dynamic nature of cellular processes. As the need for more accurate, reliable, and high-
resolution flow measurement techniques continues to grow, our method offers a promising
solution for the challenges encountered in measuring membrane flows in biological systems.
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Castro, Vincent Vincenzetti, Dimitrios Vavylonis, and Sophie G Martin. Cell patterning
by secretion-induced plasma membrane flows. Science Advances, 7(38):eabg6718, 2021.

[4] Henry De Belly, Shannon Yan, Hudson Borja da Rocha, Sacha Ichbiah, Jason P Town,
Patrick J Zager, Dorothy C Estrada, Kirstin Meyer, Hervé Turlier, Carlos Bustamante,
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General conclusion

Understanding the world, always and forever, consists of creating bridges between bits and
atoms. Models represent processed information (bits), and their value lies in how they corre-
spond to the information present in physical phenomena (including biological systems), that
is, atoms. The field of study known as the ”Inverse Problem” is focused on making models
match data. It has two aspects: first, to determine a model’s parameters from the data; and
second, to determine the model itself, given certain constraints. There are two complemen-
tary approaches to solve an inverse problem: Going from the physics to the model, or the
other way, from the model to the physics. Throughout my three years of PhD research, I
have worked to develop tools that facilitate both approaches, aiming to better understand the
mechanical aspects of embryonic development.

The most conventional approach is to go from the physics to the model. The idea is to pro-
cess as much as possible the physical phenomena, to simplify its representation in a physical
model. Our process began with observing the biological phenomena under study through a
microscope, capturing photons emitted by the biological samples with a CMOS (complemen-
tary metal-oxide-semiconductor) image sensor to produce a digital image. The features of this
image can then be extracted, analyzed, and compared with models. In Chapters 3 and 4, we
segmented images of early embryos and extracted their geometry to fit the parameters of an
active foam model, using mean-square error minimization, or a more sophisticated optimiza-
tion procedure where gradients are computed with the adjoint-state method. In Chapter 6,
we segmented films of cells and generated kymographs from the fluorescence quantifications
of the membrane contour. Then we used these kymographs to compute membrane flows by
inverting a physical model.

With our vast computational resources, we can explore new methodologies that proceed in
the opposite direction, from the model to the physics. Deep learning enables us to work with
highly abstract data, reducing the need to preprocess input images, and allows to directly fit
models from raw data. In Chapter 5, we developed an artificial microscope to compare the
model and biology in the space of images. The differentiability of this pipeline allow to fit the
parameters of any differentiable physical model. In particular, we retrieve the cell geometry
and a model of the point-spread function of the microscope.

I’d like to end with a quote from Nobel prize laureate James Watson from his famous book
The Double Helix: A Personal Account of the Discovery of the Structure of DNA: ”I have
never seen Francis Crick in a modest mood. Perhaps in other company he is that way, but I
have never had reason so to judge him”.

When pursuing innovative ideas, challenging established theories, and persevering through
setbacks, just forget the modest mood. Be bold. God leads the way.

209
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Do not forget, we are not trying to live forever. Biology is not this journey and will never be.
Keep it real. With certainty, one day you will die, just like every human being before you,
most probably in pain. Make peace with that.

We are not here to make ourselves God. We are just here to make human existence more
meaningful. We are here to invent new cures, to prevent illness, and to engineer the living to
solve the most pressing problems. We are here to free ourselves from the curse of hereditary
diseases. We are here to contemplate the wonders of nature, in its infinite complexity. We
are here to resurrect ancient species so the world can witness their beauty again. We are here
to do great things.

And great things we will do.



Appendix A

Supplementary note of chapter 3

In this Supplementary Note, we provide additional theoretical and implementation details on
the Delaunay-watershed mesh generation algorithm, the 3D active foam simulations, and the
force inference pipeline.

A.1 Multimaterial mesh generation

Our multimaterial nonmanifold triangle mesh data structure for surfaces is quite specific, and
there is currently no library available to generate them directly. To overcome this difficulty, we
used procedures to generate multimaterial tetrahedral volume meshes and developed methods
to extract their boundaries as multimaterial triangle surface meshes.

A.1.1 Instance segmentation

If we decompose each voxel into four tetrahedra, an instance segmentation can be viewed as
a tetrahedral mesh. The task of generating a mesh from a voxel segmentation can thus be
viewed as a remeshing procedure, where we convert a very fine mesh into a coarser one, which
is better suited to our analysis.

A.1.2 CGAL-based 3D surface mesh generation

CGAL [1] provides a popular tetrahedral mesh generation algorithm, which is widely used in
biomechanical modeling, to extract volumetric meshes from 3D scans from different imaging
modalities. It constitutes our baseline, from which we compared the results obtained with
our proposed remeshing algorithm, Delaunay-Watershed.
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A.1.3 Delaunay-watershed mesh generation algorithm (2D and 3D)

Distance transform map

Given an instance segmentation, we find the boundaries of the different instances with the
function find boundaries of the Python package scikit-image ( [2]) These borders can be
converted into a distance map using a Euclidean distance transform with the function dis-
tance transform edt of the Python package SciPy ( [3]).

Sampling of control points

To compute a tessellation of the space, we need to choose control points that will form the
vertices of the tessellation. The points of interest lie into the borders of the objects, i.e. where
the EDT is minimal. To regularize the tessellation, one can also add the local maxima. These
extrema are efficiently computed using the maxpool3d function of PyTorch [4], with a kernel
size of (d,d,d), d ∈ Z+, that will define the refinement of our mesh, and a stride of (1,1,1).

Delaunay tesselation

From these points, n-dimensional Delaunay tessellations are generated using the Delaunay
function from the Python library scipy.spatial.

Dual Voronoi graph

The dual Voronoi graph G = (N ,L,W) is then constructed from the tessellation, by looking
at the adjacency of the simplices obtained. In this dual representation:
• In 2D, N contains triangles, L edges, and weights are calculated by averaging the value of
the Euclidean distance transform of ns = 10 points distributed regularly along the edge.
• In 3D, N contains the tetrahedra, L the triangles, and the weights are calculated by com-
puted the average value of the euclidean distance transform of ns = 9 regularly sampled points
distributed within the triangle. This graph is converted into a Networkx ( [5]) graph, better
suited to do operations such as node clustering.

Watershed algorithm

We use the algorithm 2 from [6] to implement the seeded watershed. The seeds are computed
using the EDT: for each label l, we take the pixel px∗

l corresponding to the global minimum
of the EDT of the pixels having this label. However, to apply our watershed algorithm, the
seed needs to be a node of our graph, i.e., a simplex of the tessellation: a tetrahedra in 3D or
a triangle in 2D. For each label, we take the simplex of centroid c that minimizes the distance
to the pixel px∗

l previously found as a seed.

A.1.4 Discrete expressions of geometrical quantities on triangular surface
meshes

Below, we provide analytical formulas for calculating several discrete geometrical quantities
and their derivatives on triangular surface meshes. In the following, we will use Roman indices
(i, j, k) for quantities associated with cells (or regions), such as a tension γij between cells
of indices i and j, and Greek indices α for quantities associated with the mesh, such as the
vertices denoted {x⃗α}nv

α=1.
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Interface area and derivatives

Each interface area m and its gradient may be decomposed into a sum on its triangles

Am =
∑

t∈Am

At,
∂Am

∂x⃗α
=
∑

t∈Am

∂At

∂x⃗α
. (A.1)

Therefore, we provide the formula for only a single triangle, defined by its three vertices:
t = (x⃗α, x⃗β, x⃗γ). The non-unit and unit normals to the triangle t are defined as

N⃗t = (x⃗β−x⃗α)× (x⃗γ−x⃗α), n⃗t = N⃗t

∥N⃗t∥
. (A.2)

The area of the triangle t follows as:

At = 1
2∥N⃗t∥. (A.3)

To obtain the area gradient with respect to x⃗α, we calculate the variation of A2
t = 1

4N⃗t · N⃗t:

δ
(
S2

t

)
= 1

2N⃗t · δN⃗t = 1
2N⃗t ·

[
(x⃗γ−x⃗β)× δx⃗α

]
= 1

2N⃗t ×
[
(x⃗γ−x⃗β)

]
· δx⃗α.

From δ
(
A2

t

)
= 2At δ(At), we deduce

∂At

∂x⃗α
= 1

2 n⃗t × (x⃗γ−x⃗β). (A.4)

Cell volumes and derivatives

Stokes’ theorem tells us that for a closed manifold, for any vectorial function f we have :∫∫∫
V

div(f⃗)dτ =
∮

S
f⃗ · n⃗ ds.

If we take f⃗(x⃗) = 1
3 x⃗, for which div(f⃗)(x⃗) = 1

3(1 + 1 + 1), we have :

V =
∫∫∫

V
dτ = 1

3

∮
S

x⃗ · n⃗ ds = 1
3

∑
t=(x⃗α,x⃗β ,x⃗γ)∈S

∫∫
t
x⃗ · n⃗ ds.

We will evaluate this integral on every triangle t = (x⃗α, x⃗β, x⃗γ) ∈ S.
The center of gravity of the triangle, defined as

∫∫
x⃗∈t(x⃗− x⃗G) · n⃗ ds = 0 reads

x⃗G = x⃗α + x⃗β + x⃗γ

3 . (A.5)

We have∫∫
x⃗∈t

x⃗ · n⃗ ds =
∫∫

x⃗∈t
x⃗G · n⃗ ds = (n⃗ · x⃗G)St = (n⃗ · x⃗G)∥(x⃗γ − x⃗α)× (x⃗β − x⃗α)∥

2 .

By developing the expressions of x⃗G and St, we can write:∫∫
x⃗∈t

x⃗ · n⃗ ds = 1
6(x⃗α + x⃗β + x⃗γ) · [(x⃗γ − x⃗α)× (x⃗β − x⃗α)]

= 1
6(x⃗γ − x⃗α + x⃗β − x⃗α + 3x⃗α + x⃗β + x⃗γ) · [(x⃗γ − x⃗α)× (x⃗β − x⃗α)]

= 1
2 x⃗α · (x⃗γ × x⃗β)

= 1
2 det(x⃗α, x⃗β, x⃗γ).
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Finally,
V = 1

3

∮
S

x⃗ · n⃗ ds = 1
6

∑
(x⃗α,x⃗β ,x⃗γ)∈S

det(x⃗α, x⃗β, x⃗γ). (A.6)

Thus, the derivative of the volume with respect to the vertex writes

∂V
∂x⃗α

= 1
6

∑
(x⃗α,x⃗β ,x⃗γ)∈triangles

x⃗β × x⃗γ . (A.7)

Junction length and derivatives

The length of a discrete curve can be written :

L =
∑

(x⃗α,x⃗β)∈edges

∥x⃗α − x⃗β∥. (A.8)

Consider an edge (x⃗α, x⃗β) of length L(x⃗α, x⃗β) = ∥x⃗α − x⃗β∥. To compute its derivative, we
place ourselves on a basis where e⃗1 = x⃗α−x⃗β

∥x⃗α−x⃗β∥ and

L(x⃗α + δ⃗, x⃗β) = ∥x⃗α − x⃗β∥+ δ⃗ · e⃗1.

The derivative with respect to each vertex is deduced as follows

∂L
∂x⃗α

= x⃗α − x⃗β

∥x⃗α − x⃗β∥
. (A.9)

Contact angles

For each junction (i, j, k) between three cells (or the exterior), each edge is connected to three
triangles, making the interface between two materials: tij , tik, tjk of normals n⃗ij , n⃗ik, n⃗jk (See
Ext Fig. 1a)

αab = arccos(n⃗ac · n⃗bc) for any (a,b,c) permutation of (i,j,k). (A.10)
For force inference the junctional angles that appears in Young-Dupré force balance variants
are defined as the average of the dihedral angles computed on every edges belonging to the
junction.

Mean curvature

For a smooth manifold, the mean curvature κ̄ at a given point is, by definition, the divergence
of the normal vector at this point. A possible differential geometry definition of the curvature
normal H n⃗ is

Hn⃗ = lim
diam(A)→0

∇⃗A

AS
,

where A is a small area around the point where the curvature is evaluated and diam(S) its
diameter.
A discrete geometry equivalent to the previous formula was derived by [7]

−Hi n⃗i = 1
4

∑
j∈N1(i)

(
cot αij + cot βij

)
(x⃗j − x⃗i), (A.11)

where αj and βj are the two angles opposite to the edge in the two triangles that share the
edge (x⃗i, x⃗j) as shown in the Ext Fig. 1d, and N1(i) is the set of neighbors with one ring of
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the vertex i.

For force inference, the interfacial mean curvatures that appears in Laplace equations are
defined as the average of the mean-curvature computed on every vertices belonging to the
interface.

A.2 Mechanical equilibrium in a heterogeneous foam

A.2.1 Active foam model hypotheses

We assume that the shape of the blastomeres in the early embryos of interest is primarily
controlled by cortical tensions [8,9]. These surface tensions originate from cortical contractility
and are considered homogeneous and isotropic at each cell-cell interface. The tension of the
plasma membrane is lower, generically by an order of magnitude [8] but it may be counted
in the surface tensions if necessary. The direct negative contribution to the surface tension
of adhesion molecules (cadherin) is also negligible in general [8], but may also be counted in
interface tensions, as long as all effective interface tensions remain strictly positive. Therefore,
an assembly of cells is supposed to be akin to a heterogeneous foam-like structure but where
each interface may have a different surface tension, which is controlled actively by adjacent
cells. The evolution of cell shapes is assumed to be quasistatic, which means that viscous
dissipation is neglected. This hypothesis is well justified by comparing the typical timescale
associated with viscous relaxation of the cortex, on the order of dozens of seconds [10,11], and
the timescale associated with typical morphogenetic events in early embryos, rather than of
the order of dozens of minutes. Moreover, we assume that blastomeres conserve their volumes
on typical morphogenetic timescales (between two divisions).

A.2.2 Active-foam 3D simulations

Lagrangian function and force on a vertex

Our numerical simulations consist of a constrained optimization of a surface energy defined
on an initial nonmanifold triangular mesh. The surface energy and Lagrangian function for a
set of nc cells are defined as follows:

E =
nm∑

m=1
γmAm, (A.12)

L = E −
nc∑

k=1
pk(Vk − V0

k), (A.13)

where γm and Am are, respectively, the surface tension and area of the interface between the
regions am and bm where am, bm ∈ [0, nc], m ∈ [1, nm] are an index of a membrane, which
identifies a pair of regions. pk and V0

k are, respectively, the pressure and target volume value
of the cell k. Note that for interfaces am and bm span [0, nc], where 0 refers to the external
medium, while for cells k span [1, nc].

From the Lagrangian function, one can calculate the force f⃗x = −∂L
∂x⃗

at each vertex of the
mesh x⃗ ∈ {x⃗α}nv

α=1 as follows

f⃗x = −∂E
∂x⃗

+
nc∑

k=1
pk

∂Vk

∂x⃗
= −

nm∑
m=1

γm
∂Am

∂x⃗
+

nc∑
k=1

pk
∂Vk

∂x⃗
. (A.14)
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Lagrangian function for embryos within a shell

For the example of C. Elegans, the optimization of a surface energy must satisfy an additional
constraint, that is, that every vertex must lie in the shell. We call S the shell, κ the stiffness of
the shell, Fel the elastic force exerted by the shell on the vertices outside its bounds, defined
by :

Fel(x⃗α) = ∥x⃗α − x⃗S(x⃗α)∥2 ·NS(x⃗S(x⃗α)), (A.15)
where NS(x⃗) is the normal of the surface of the shell at the point x⃗ (belonging to the shell),
and x⃗S(x⃗) is the orthogonal projection of the vertex x⃗ on the surface of the shell S.

The surface energy and Lagrangian function for a set of N cells then take the following form

E =
nm∑

m=1
γmAm + κ

2
∑

x̃α /∈S
Fel(x⃗α), (A.16)

L = E −
nc∑

k=1
pk(Vk − V0

k). (A.17)

A.2.3 Variants of the Young-Dupré tension balance

To obtain scalar values of the tensions, we first choose to fix the average surface tension to 1,
with a first equation:

nm∑
m=1

γm = nm. (A.18)

Tension-balance gives relative relationships between surface tensions, and can be expressed
in numerous ways. For all the following formulas, (i, j, k) represents three materials (cells or
exterior media) that meet at a triple junction.

Young-Dupré
∀(i, j, k), γij + γik cos αjk + γjk cos αik = 0 (A.19)

∀(i, j, k), γij cos αjk + γik + γjk cos αij = 0 (A.20)

∀(i, j, k), γij cos αik + γik cos αij + γjk = 0 (A.21)

Projection Young-Dupré

∀(i, j, k), γij + γik cos αjk + γjk cos αik = 0 (A.22)

∀(i, j, k), γik sin αjk − γjk sin αik = 0 (A.23)
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Lami
∀(i, j, k), γij

sin αij
= γik

sin αik
= γjk

sin αjk
(A.24)

Inverse Lami
∀(i, j, k), γij sin αik = γik sin αij (A.25)

∀(i, j, k), γij sin αjk = γjk sin αij (A.26)

∀(i, j, k), γik sin αjk = γjk sin αik (A.27)

Lami logarithm

∀(i, j, k), log γij − log sin αij = log γik − log sin αik = log γjk − log sin αjk (A.28)

A.2.4 Mesh-based variational force balance

In this study, we propose new force-balance equations, Variational Young-Dupré and Varia-
tional Laplace equations, that can be used for tension inference. In this section we propose a
detailed derivation of these equations. Our mesh, which describes the surface of the embryo,
is composed of nv vertices, nc cells of volumes V 0

l for l ∈ 1 . . . nc and of nm membranes (or
interfaces) of area Am. The equilibrium shape is given by minimizing the energy of the mem-
branes, which have a defined surface tension γm, under the constraint of volume conservation
V. We call the set of vertices of the mesh V = {x⃗α}nv

α=1,the set of cells C, and the set of
membranes M.

Geometrical model

Keeping the same notation as before, the Lagrangian function that is minimized is:

L =
nm∑

m=1
γmAm −

nc∑
k=1

pk(Vk − V0
k), (A.29)

In equilibrium, we have ∂L
∂x⃗α

= 0⃗.
The equilibrium of the forces gives us, for each vertex x⃗α, the following equation :

0⃗ =
nm∑

m=1
γm

∂Am

∂x⃗
−

nc∑
k=1

pk
∂Vk

∂x⃗
. (A.30)

This can be summarized as a product between a huge tensor Q ∈ Rnv×(nm+nc)×3 that contains
the derivatives of the areas and volumes with respect to each vertex, and the matrix Π ∈
Rnm+nc that contains the surface tensions and pressures. This product gives the equilibrium
equations for each of the vertices. The tensor Q can be conveniently expressed as a matrix of
R3 vectors:

Q×Π =



∇x⃗1A1 . . . ∇x⃗1Anm ∇x⃗1V1 . . . ∇x⃗1Vnc

. . . .

. . . .

. . . .

. . . .
∇ ⃗xnv

A1 . . . ∇ ⃗xnv
Anm ∇ ⃗xnv

V1 . . . ∇ ⃗xnv
Vnc





γ1
. . .
γnm

−p1
. . .
−pnc


= 0
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State Equations

We will define a matrix R ∈ R(nc+nm)×(nc+nm) : R = QT Q. We note that R×Π = 0.

R =



∑
i∈V
∥∇x⃗i

A1∥2 . . .
∑
i∈V

(∇x⃗i
A1 · ∇x⃗i

Anm)
∑
i∈V

(∇x⃗i
A1 · ∇x⃗i

V1) . . .
∑
i∈V

(∇x⃗i
A1 · ∇x⃗i

Vnc)

...
...

...
...∑

i∈V
(∇x⃗i

Anm · ∇x⃗i
A1) . . .

∑
i∈V
∥∇x⃗i

Anm∥2
∑
i∈V

(∇x⃗i
Anm · ∇x⃗i

V1) . . .
∑
i∈V

(∇x⃗i
Anm · ∇x⃗i

Vnc)

∑
i∈V

(∇x⃗i
V1 · ∇x⃗i

A1) . . .
∑
i∈V

(∇x⃗i
V1 · ∇x⃗i

V1)
∑
i∈V
∥∇x⃗i

V1∥2 . . .
∑
i∈V

(∇x⃗i
V1 · ∇x⃗i

Vnc
)

...
...

...
...∑

i∈V
(∇x⃗i

Vnc · ∇x⃗i
A1) . . .

∑
i∈V

(∇x⃗i
Vnc
· ∇x⃗i

Anm
)

∑
i∈V

(∇x⃗i
Vnc
· ∇x⃗i

V1) . . .
∑
i∈V
∥∇x⃗i

Vnc
∥2


We note that matrix R has a kernel of dimension 1. We need to add another equation to fix
the tension scales (by setting the mean to 1 for example).
The state equations that we choose are S = R×Π = 0 which gives us discretized equations:

∀l ∈M, 0 =
nm∑

m=1
γm

∑
i∈V

∂Am

∂x⃗i
· ∂Al

∂x⃗i

− nc∑
k=1

pn

∑
i∈V

∂Vk

∂x⃗i
· ∂Al

∂x⃗i

 (A.31)

∀n ∈ C, 0 =
nm∑

m=1
γm

∑
i∈V

∂Am

∂x⃗i
· ∂Vn

∂x⃗i

− nc∑
k=1

pn

∑
i∈V

∂Vk

∂x⃗i
· ∂Vn

∂x⃗i

 (A.32)

Matrix equations

We will note Γ = (γ1, γ2 . . . γnm)T the generalized vector of tensions and P = (p1, p2 . . . pnc)T

the generalized vector of pressures.

We can represent the first set of discretized equations using matrix notation GΓ ∈ Rnm×nm , and BP ∈
Rnm×nc verifying GΓΓ− BP P = 0 :

∀l, m ∈ (1 . . . nm) Glm
Γ =

∑
i∈V

∂Am

∂x⃗i
· ∂Al

∂x⃗i

∀k ∈ (1 . . . nc), l ∈ (1 . . . nm) Blk
P =

∑
i∈V

∂Vk

∂x⃗i
· ∂Al

∂x⃗i

GΓ is generally not invertible; all tensions are fixed to one parameter.
We can represent the second set of discretized equations using matrix notation BΓ ∈ Rnc×nm , and GP ∈
Rnc×nc verifying BΓΓ−GP P = 0 :

∀n ∈ (1 . . . nc), m ∈ (1 . . . nm) Bnm
Γ =

∑
i∈V

∂Am

∂x⃗i
· ∂Vn

∂x⃗i

∀k, n ∈ (1 . . . nc) Gnk
P =

∑
i∈V

∂Vk

∂x⃗i
· ∂Vn

∂x⃗i

GP is invertible thus knowing Γ and K, we can deduce P from these equations, that we call
Variational Laplace equations:

P = (GP )−1BΓΓ. (A.33)
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We can write Π =
(

Γ
P

)
and write the previous equations into a block matrix M:

M×Π = 0 ⇐⇒
(

GΓ −BP

BΓ −GP

)
×
(

Γ
P

)
= 0 (A.34)

Thus, the Variational Young-Dupré equations for tension inference are

(GΓ − BP (GP )−1BΓ)× Γ = 0, (A.35)

(1 · · · 1)× Γ = nm. (A.36)

This last equation fixes the average of the surface tensions to 1.

Proof that the matrix GP is invertible

In the previous section, we assumed that the matrix Gp is invertible. To demonstrate this
hypothesis, we have to show that the matrix of volume gradients has full rank (linearly
independent columns). For simplicity, assume that each face of each discretized cell has an
interior point and that the cells are numbered in ”decreasing” order, from the outermost(s)
to the innermost(s), more precisely, in the sense that there exists x⃗i1 ∈ Cell1 such that
x⃗i1 /∈

⋃
k>=2

Cellk, and recursively, for all k ∈ (1 . . . nc), there exists x⃗ik
∈ Cellk such that

x⃗ik
/∈

⋃
k′>=k+1

Cellk′ . Now assume that the volume gradients are not linearly independent,

then there exists P1, . . . , Pnc ∈ R such that for all i ∈ (1 . . . nv)
nc∑

k=1
Pi∇x⃗i

Vk = 0. (A.37)

Hence, for i = i1, we simply have P1∇x⃗i1
V1 = 0. Furthermore, the gradient of V1 with respect

to x⃗i1 is the sum of the gradients with respect to x⃗i1 of the volumes of the tetrahedra defined
by the apex 0 and the triangles surrounding x⃗i1 , so ∇x⃗i1

V1 ̸= 0 so that P1 = 0 and

nc∑
k=2

Pi∇x⃗i
Vk = 0. (A.38)

Thus, by recursion, we have Pi = 0 for all i ∈ (1 . . . nc), so that the volume gradients are
linearly independent. Consequently, the matrix Gp is invertible.

A.3 Force inference

A.3.1 Hypotheses for tension and pressure inference

We assume that each pressure p is positive and put the pressure of the exterior medium at
0. The surface tensions y are also positive, and as explained before we arbitrarily put their
mean at 1. This choice of scale for the tensions imposes a scale on the pressures, as appears in
the Laplace law 2γijHij = pi − pj . However, the scale of the mean curvature Hij depends on
the size of the embryo. To compute the curvature with the right scaling, one would need to
have a mesh that has the precise dimensions of the biological sample. This is not out of reach
experimentally, but since we were interested in relative and not absolute values (absolute
measurement of surface tensions being not available in any way), we found it more convenient
to fix the biggest pressure at 1.
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A.3.2 In silico validation

With our previously introduced 3D active foam model, we generated 47 simulations of cell
clusters, ranging from 2 to 11 cells, with random tensions.
From these meshes, we generated artificial images by defining a bounding box and convolving
the mesh by a Gaussian Point Spread Function. To do the convolution efficiently, we make
the operation in Fourier space before doing an inverse Fourier transform to go back into the
spatial domain.
A simple thresholding of these images allowed us to compute the membrane boundaries.
The segmentation masks were then computed using a watershed algorithm. Masks were
expanded until they merged to avoid holes inside embryos that would have perturbed meshing
algorithms, and thus the computation of geometrical quantities.

A.3.3 Ordinary Least Squares

Each of the linear least squares problems encountered is solved in the same manner: we have
A ∈ Rn×m, X ∈ Rm and C ∈ Rm such that:

AX = C (A.39)

And we want to determine X from A and C.
To determine an estimator of X, we choose the ordinary least squares (OLS) method that
minimizes the sum of squared residuals, that is, we want to find X such that ∥AX − C∥2 is
minimal. The solution can be expressed in a closed form:

X = (AT A)−1AT C (A.40)

A.3.4 Ordinary Least Squares for tension inference

Form of the matrices A and C for Tension inference

The form of the matrix A and C depends on the number of equations neq, which depends on
the formula choosen.

A =


α11 . . . α1nm

. . . . . .
αneq1 . . . αneqnm

1 . . . 1

 , X =
(

Γ
)

, C =


0

. . .
0

nm

 (A.41)

Note that A is very sparse, as each line has only three non-zero terms (except the last one).

Weighting by the junctional length

For the tension inference equations (except for the variational Young-Dupré variant), each
equation is linked to a given triple junction. The longer the junction, the better the deter-
mination of the angles of the junction will be. We decided to weight each of the equations
by the length of the junction associated with it. Thus, if we consider the original unscaled
matrices A and C used to infer tension, instead of minimizing ∥AX−C∥2 = ∑

i((AX)i−Ci)2

we minimize: ∑
i

((AX)i − Ci)2 ∗ L2
i , (A.42)

where Li is the length of the junction considered in the ith equation.
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Here is a table of the median relative error of the different methods of tension inference, with
and without weighting of junctional length:

Young-Dupré Proj. Young-Dupré Lami Inverse Lami Lami Log
With length weight (%) 10.1 10.4 11.7 11.0 11.8
No length weight (%) 10.8 11.7 12.7 11.9 12.4

Form with Variational equations

With Variational Young-Dupré equations, we can express A and C as block matrices:

A =
(

GΓ − BP (GP )−1BΓ
1

)
, X =

(
Γ
)

, C =
(

0
nm

)
(A.43)

A.3.5 Ordinary Least Squares for pressure inference

Variational pressure inference

The Variational Laplace equations offers a way to infer pressures.

GP P = BΓΓ. (A.44)

It is an OLS problem with A = GP , X = P, C = BΓΓ.

Form of the matrices A and C for Pressure inference with Laplace Law

There is one Laplace equation for each interface, so nm equations in total, thus A ∈ Rnm×nc , X ∈
Rnc , C ∈ Rnm . Each relation writes pam − pbm = γmHm where am and bm are the regions
delimited by the interface m, of surface tension γm and mean curvature Hm. Thus A and C
writes:

A =

 β11 . . . β1nc

. . . . . .
βnm1 . . . βnmnc

 , X =
(

P
)

, C =

 2γ1Ha1b1

. . .
2γnmHanm bnm

 (A.45)

,
Where βij = 1 if j ∈ {ai, bi} and 0 otherwise.

Weighting by the interfacial area

For the pressure inference equations with Laplace’s law, each equation is linked to a given
interface. The larger the area, the better the determination of the curvature of the interface
will be. We decided to weight each of the equations by the area of the interface associated
with it.
Thus, if we consider the original unweighted matrices A and C used to infer pressure, instead
of minimizing ∥AX − C∥2 = ∑

i((AX)i − Ci)2 we will minimize:∑
i

((AX)i − Ci)2 ∗ A2
i , (A.46)

where Ai is the area of the interface considered in the ith equation.
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Here is a table of the median relative error of the different methods of pressure inference, with
the tensions previously inferred using the Young-Dupré formula:

Laplace’s Law Variational Laplace
With area weight (%) 12.5 -
No area weight (%) 12.6 12.0

A.4 Stress tensor

We consider a cell a. The cell surface is composed of membrane portion m ∈ a of constant
surface tension γa

m. The energy of the total foam writes E = ∑nm
m=1 γmAm, but alternatively,

we can express the energy of the foam by summing up the contributions of each cell:

E =
∑

a

∑
m∈a

γa
mAm (A.47)

For a membrane portion m that is in contact with the exterior medium, we can identify γm

and γa
m. However, for a surface shared between two cells, each membrane area is counted

twice, so γa
m = γm

2 .
We note Va+ the total volume of the cell and Va− the volume of the cell enclosed by the
membrane. We note A0 the surface of the membrane The mean stress writes :

σ
a

= 1
Va

∫
Va+

σ(x⃗) dV (A.48)

We decompose it between the bulk and membrane components :

σ
a

= 1
Va

∫
Va−

σ(x⃗) dV + 1
Va

(∫
Va+

σ(x⃗)dV −
∫

Va−
σ(x⃗)dV

)
(A.49)

The stress σ is constant within the cell, its value being defined by hydrostatic pressure pa. In
the cell membrane, the small thickness limit established in [12] leads to the following relation:(∫

Va+
σ(x⃗) dV −

∫
Va−

σ(x⃗) dV

)
=
∫

A0
γa(δ − n⃗⊗ n⃗) dS (A.50)

We note δ the identity tensor and n⃗ =

 n1
n2
n3

 and n⃗⊗ n⃗ =

 n1n1 n1n2 n1n3
n2n1 n2n2 n2n3
n3n1 n3n2 n3n3

.

Eventually, the mean stress reads

σ
a

= −paδ +
∑
m∈a

γa
m

Va

∫
m

(δ − n⃗⊗ n⃗) dS (A.51)

We can decompose each surface membrane m into individual triangles that make up it. As
the normal is constant on a triangle, the integral simplifies itself :∫

m
(δ − n⃗⊗ n⃗) dS =

∑
t∈m

∫
t
(δ − n⃗⊗ n⃗) dS =

∑
t∈m

At(δ − n⃗t ⊗ n⃗t) (A.52)

σ
a

= −paδ +
∑
m∈a

γa
m

Va

∑
t∈m

At(δ − n⃗t ⊗ n⃗t) (A.53)

We can compute it numerically from our mesh once the force inference is done and plot it on
the mesh to show the principal axes of the stress tensor in the cell.
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[10] Hervé Turlier, Basile Audoly, Jacques Prost, and Jean-François Joanny. Furrow constric-
tion in animal cell cytokinesis. Biophysical journal, 106(1):114–123, 2014.

[11] Nargess Khalilgharibi, Jonathan Fouchard, Nina Asadipour, Ricardo Barrientos, Maria
Duda, Alessandra Bonfanti, Amina Yonis, Andrew Harris, Payman Mosaffa, Yasuyuki
Fujita, et al. Stress relaxation in epithelial monolayers is controlled by the actomyosin
cortex. Nature physics, 15(8):839–847, 2019.

[12] GK Batchelor. The stress system in a suspension of force-free particles. Journal of fluid
mechanics, 41(3):545–570, 1970.



224 BIBLIOGRAPHY



Appendix B

Supplementary note of chapter 4

In this Supplementary Note, we provide additional theoretical and implementation details on
the Adjoint-state method procedure for embryos with line tensions.

B.1 An introduction to line tensions

Our method could be applied with success to infer line tension on embryos. It would allow
the first measurement of line tensions in a biological system, which would be a fundamental
landmark discovery in the study of the mechanics of biological systems.

With line tensions, the system is described by the following Lagrangian:

L =
nm∑

m=1
γmAm +

nj∑
j=1

κjLj −
nc∑

k=1
pk(Vk − V0

k), (B.1)

The mechanical equilibrium of an active foam can be described from the following equation:

0⃗ = ∂L
∂x⃗α

=
nm∑

m=1
γm

∂Am

∂x⃗α
+

nj∑
j=1

κj
∂Lj

∂x⃗α
−

nc∑
k>1

pk
∂Vk

∂x⃗α
(B.2)

where κj and Lj are, respectively, the line tension and length of the junctional line between
the regions qj , rj and sj where {qj , rj , sj} ∈ J0, NK3, j ∈ J1, njK is an index of a junction,
which identifies a triplet of regions. To simulate active foams with line tension, one just need
to add the line tensions as input parameters, and compute the gradient of the junctional
length.

We will start by studying the case of the doublet with line tension, to see how force-balance
equations are affected by the presence of line tensions.

B.1.1 The doublet with line tensions

Lets take back the parametrization of the doublet that we introduced in the chapter 2, and see
what happens when we add line tension at the junction. The surface tensions of each surfaces
are denoted by t1, t2, t3. The line tension at the junction between the two cell is denoted by
κ. The respective volumes of cells 1 and 2 are denoted by V1 and V2.
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Figure B.1: Cells configuration

Configuration at minimum energy

We are interested in finding the configuration of the cells at minimum energy of the system.
The energy E of the system is given by the sum of surface tensions times the areas, that is

E = 2πh2
(

t1
1 + c1

+ t2
1 + c2

+ t3
1 + c3

)
+ 2πhκ,

where

c1 = cos α1, s1 = sin α1, c2 = cos α2, s2 = sin α2, c3 = cos α3, s3 = sin α3.

The volumes of cells 1 and 2 are given by

V1 = 2πh3
(
−s1(2 + c1)

(1 + c1)2 + s3(2 + c3)
(1 + c3)2

)
,

V2 = 2πh3
(

s2(2 + c2)
(1 + c2)2 −

s3(2 + c3)
(1 + c3)2

)
,

In the following of the documents, for sake of simplicity, we define E = E
2π

and vk = Vk

2π
for

k ∈ {1, 2} so that we have

E = h2
(

t1
1 + c1

+ t2
1 + c2

+ t3
1 + c3

)
+ hκ, (B.3)

and

v1 = h3
(
−s1(2 + c1)

(1 + c1)2 + s3(2 + c3)
(1 + c3)2

)
,

v2 = h3
(

s2(2 + c2)
(1 + c2)2 −

s3(2 + c3)
(1 + c3)2

)
.

To impose conservation of the volume, we will find the solution of the Lagrangian:

L(h, α1, α2, α3) = E − P1(v1 − v0
1)− P2(v2 − v0

2) (B.4)
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Systems for the possible local extrema

Deriving the Lagrangian E − P1w1 − P2w2 with respect to α1 and α2, we easily get the
Lagrange multipliers

P1 = − t1s1
3h

, P2 = t2s2
3h

.

Deriving with respect to h and α3 and replacing by the values of P1 and P2, we get the balance
of forces at the joining points

t1c1 + t2c2 + t3c3 + κ

h
= 0, t1s1 + t2s2 + t3s3 = 0.

Thus, the introduction of a line tension leads to an additional term in the Young-Dupré
equation. This additional term is the line tension divided by the radius of curvature of the
junction, and is directed towards the center of curvature of the junction.

Generalisation to arbitrary cell configurations

Figure B.2: Notations

With a number of cell higher than two, the energy keeps the same form so the same energetical
derivation can be done. For nc cells, nm membranes of area Ai and nj junctions of length li
(on which there are line tensions) :

E =
∑

m∈1...nm

tmAm +
∑

i∈1...nj

κili

from which we can always deduce generalized Young-Dupré equations for each junction be-
tween the cells (i, j, k), of circumradius h and of line tension κijk :

−→
tij +−→tjk +−→tik + κijk

h
−→uc = −→0

Where −→uc is the unit vector linking the point of the junction considered X and the circumcenter
of the junction C :

−→uc =
−−→
XC

||
−−→
XC||
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−→
tX is the tangent vector of the junction, considered at the point X We can project this relation
on −→uc and on −→uc ∧

−→
tx to obtain :

tijcos(θij) + tjkcos(θjk) + tikcos(θik) + κijk

h
= 0

tijsin(θij) + tjksin(θjk) + tiksin(θik) = 0

Where the angles θab are defined on the figure bellow

Figure B.3: Definition of the angles at a triple junction

B.2 State Equations with line tensions

To find the state equations in this case, we first rewrite the equilibrium as a product between a
huge tensor Q ∈ Rnv×(nm+nc+nj)×3 that contains the derivatives of the areas and volumes and
junctional length with respect to each vertex, and the matrix Π ∈ Rnm+nc+nj that contains the
surface tensions, the line tensions and pressures. The tensor Q can be conveniently expressed
as a matrix of R3 vectors:

Q =



∇x⃗1A1 . . . ∇x⃗1Anm ∇x⃗1V1 . . . ∇x⃗1Vnc ∇x⃗1L1 . . . ∇x⃗1Lnj

. . . . . .

. . . . . .

. . . . . .

. . . . . .
∇ ⃗xnv

A1 . . . ∇ ⃗xnv
Anm ∇ ⃗xnv

V1 . . . ∇ ⃗xnv
Vnc ∇x⃗1L1 . . . ∇x⃗1Lnj


and the matrix P is expressed as Π =

(
γ1 . . . γnm , −p1 . . .− pnc , κ1 . . . κnj

)T

Then as before, we define a matrix R ∈ R(nm+nc+nj)×(nm+nc+nj) : R = QT Q. R × Π = 0,
thus we can establish three sets of equations:

∀l ∈ J1 . . . nmK, 0 =
∑

m∈M
γm (

∑
i

∂Am

∂x⃗α
· ∂Al

∂x⃗α
) +

∑
j∈J

κj(
∑

i

∂Lj

∂x⃗α
· ∂Al

∂x⃗α
)−

∑
n∈C

pn (
∑

i

∂Vn

∂x⃗α
· ∂Al

∂x⃗α
)

(B.5)
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∀k ∈ J1 . . . ncK, 0 =
∑

m∈M
γm (

∑
i

∂Am

∂x⃗α
· ∂Vk

∂x⃗α
) +

∑
j∈J

κj(
∑

i

∂Lj

∂x⃗α
· ∂Vk

∂x⃗α
)−

∑
n∈C

pn (
∑

i

∂Vn

∂x⃗α
· ∂Vk

∂x⃗α
)

(B.6)

∀q ∈ J1 . . . njK 0 =
∑
m

γm(
∑

i

∂Am

∂x⃗α
· ∂Lq

∂x⃗α
)+
∑

j

κj(
∑

i

∂Lj

∂x⃗α
· ∂Lq

∂x⃗α
)−
∑

n

pn(
∑

i

∂Vn

∂x⃗α
· ∂Lq

∂x⃗α
) (B.7)

We define nine matrices, Glm
Γ = ∑⃗

xα

∂Am
∂x⃗α
· ∂Al

∂x⃗α
, Glk

P = ∑⃗
xα

∂Vk
∂x⃗α
· ∂Al

∂x⃗α
, Glj

κ = ∑⃗
xα

∂Lj

∂x⃗α
· ∂Al

∂x⃗α
, Bnm

Γ =∑
x⃗α

∂Am
∂x⃗α
· ∂Vn

∂x⃗α
, Bnk

P = ∑
x⃗α

∂Vk
∂x⃗α
· ∂Vn

∂x⃗α
, Bnj

κ = ∑
x⃗α

∂Lj

∂x⃗α
· ∂Vn

∂x⃗α
, Hqm

Γ = ∑
x⃗α

∂Am
∂x⃗α
· ∂Lq

∂x⃗α
, Hqk

P =∑
x⃗α

∂Vk
∂x⃗α
· ∂Lq

∂x⃗α
, Hqj

κ = ∑
x⃗α

∂Lj

∂x⃗α
· ∂Lq

∂x⃗α
, and uses them to reexpress our equations using the fol-

lowing block matrix:

 GΓ −GP Gκ

BΓ −BP Bκ

HΓ −HP Hκ

×
 Γ

P
K

 = 0, (B.8)

GΓ,P,κ are matrices of sizes respectively n2
m, nm × nc and nm × nj , BΓ,P,κ are rectangular

matrices of sizes respectively nc × nm, n2
c and nc × nj , and HΓ,P,κ are rectangular matrices

of sizes respectively nj × nm, nj × nc and n2
j . The central line gives the Variational Laplace

equations:
BP P = BΓΓ + BκK (B.9)

In the appendix, we demonstrate that the matrix BP is invertible. We can thus write a
closed-form linear system for the tensions and line tensions alone, that constitutes our state
equations, the Variational Young-Dupré equations:(

Gγ −Gp(Bp)−1Bγ Gκ −Gp(Bp)−1Bκ

Hγ −Hp(Bp)−1Bγ Hκ −Hp(Bp)−1Bκ

)
×
(

Γ
K

)
= 0 (B.10)

As before, we can in theory use these state equations to solve the inverse problem. The first
guess can be based on the tension inference, without line tension, and the optimization will
thus learn the right line tensions necessary to represent the mesh properly.







MOTS CLÉS

Microscopie, Modélisation 3D, développement embryonnaire, problème inverse, simulation de mousses,
méthode de l’état adjoint, réseaux de neurones profonds, transport optimal, biologie cellulaire, Biophysique.

RÉSUMÉ

De nouveaux paradigmes d’imagerie par microscopie ont engendré une profusion de données, en deux et trois dimensions,
avec une résolution spatiale et temporelle inégalée. Pour comprendre quantitativement les phénomènes mécaniques qui
déterminent la forme des cellules et des embryons, il est nécessaire de faire correspondre les informations issues de ces
images avec des modèles physiques, tâche désignée sous l’appellation de résolution d’un ”problème inverse”. C’est l’objectif
principal de cette thèse. Dans la première partie, nous établissons une analogie entre les premiers stades du developpement
de l’embryon et des modèles de mousses hétérogènes. Nous explorons les complexités de la simulation de ces mousses,
déduisant les tensions de surface et les pressions à partir des images de deux manières : d’abord par l’intermédiaire de la
minimisation de l’erreur quadratique moyenne des equations d’équilibre physique, puis grâce à une procédure d’optimisation
plus sophistiquée où les gradients sont calculés en utilisant la méthode de l’état adjoint. Par la suite, nous présentons un
nouvel outil pour l’analyse d’image de microscopie: alphaMic, un microscope artificiel qui génère des images 3D à partir de
modèles numériques. Cet outil permet de tester des algorithmes d’analyse d’images et de générer des données artificielles
pour entrainer des réseaux de neurones profonds. Sa version différentielle, deltaMic, est capable de determiner, a partir
de vraies images, la geometrie de cellules et les caractéristiques optiques d’un microscope. Enfin, nous présentons une
méthode basée sur le transport optimal pour inferer les flux de membrane à partir de kymographes.

ABSTRACT

Novel microscopy paradigms have given rise to an abundance of data, both in two and three dimensions, with an unprece-
dented spatial and temporal resolution. A quantitative comprehension of the mechanical phenomena shaping cells and
embryos requires to fit information obtained from these images to physical models, a task referred to as solving an ”Inverse
problem”. This is the central focus of this thesis. In the initial part, we establish an analogy between early embryos and het-
erogeneous foams. We delve into the complexities of foam simulation, inferring surface tensions and pressures from images
in two ways, first by minimizing the mean-square error of physical equations, then using a more sophisticated optimization
procedure in which gradients are calculated with the adjoint-state method. Subsequently, we introduce another tool for mi-
croscopy image analysis: alphaMic, an artificial microscope, that generates 3D images from numerical models. This novel
tool provides the capability to benchmark algorithms, produce artificial data to train deep-neural networks. Its differentiable
version, deltaMic, is able to fit geometry and point spread function models from real microscopy images. Ultimately, we
present a method based on optimal transport for inferring membrane flows from kymographs.

KEYWORDS

Microscopy, 3D Modeling, embryonic development, inverse problem, foam simulation, adjoint state method, deep
neural networks, optimal transport, cellular biology, Biophysics.
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